Extreme points in $C(K,L^ \varphi (\mu ))$
HTML articles powered by AMS MathViewer
- by Ryszard Grząślewicz
- Proc. Amer. Math. Soc. 98 (1986), 611-614
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861761-3
- PDF | Request permission
Abstract:
Let ${L^\phi }(\mu )$ denote an Orlicz space and let $\phi$ satisfy the condition ${\Delta _2}$. It is shown that the extreme points of the unit ball of the space of continuous functions from a compact Hausdorff space $K$ into ${L^\phi }(\mu )$ with supremum norm on $C(K,{L^\phi }(\mu ))$ are precisely the functions with values in the set of extreme points of the unit ball of ${\text {of }}{L^\phi }(\mu )$.References
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- R. M. Blumenthal, Joram Lindenstrauss, and R. R. Phelps, Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747–756. MR 209862, DOI 10.2140/pjm.1965.15.747
- A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231 (1977/78), no. 3, 193–203. MR 467249, DOI 10.1007/BF01420240
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Alan Gendler, Extreme operators in the unit ball of $L(C(X),C(Y))$ over the complex field, Proc. Amer. Math. Soc. 57 (1976), no. 1, 85–88. MR 405173, DOI 10.1090/S0002-9939-1976-0405173-9
- Peter Greim, An extremal vector-valued $L^{p}$-function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), no. 1, 65–68. MR 633279, DOI 10.1090/S0002-9939-1982-0633279-0
- Ryszard Grząślewicz, Finite-dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33 (1985), no. 5-6, 277–283 (English, with Russian summary). MR 816376
- A. Iwanik, Extreme contractions on certain function spaces, Colloq. Math. 40 (1978/79), no. 1, 147–153. MR 529807, DOI 10.4064/cm-40-1-147-153
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Vypuklye funktsii i prostranstva Orlicha, Problems of Contemporary Mathematics, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (Russian). MR 0106412
- Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. MR 77107, DOI 10.2307/1969615
- P. D. Morris and R. R. Phelps, Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183–200. MR 262804, DOI 10.1090/S0002-9947-1970-0262804-3
- Susanna Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), no. 3, 193–200. MR 450938, DOI 10.1007/BF01391464
- M. Sharir, Characterization and properties of extreme operators into $C(Y)$, Israel J. Math. 12 (1972), 174–183. MR 317026, DOI 10.1007/BF02764661
- M. Sharir, A counterexample on extreme operators, Israel J. Math. 24 (1976), no. 3-4, 320–337. MR 438177, DOI 10.1007/BF02834762
- M. Sharir, A non-nice extreme operator, Israel J. Math. 26 (1977), no. 3-4, 306–312. MR 454722, DOI 10.1007/BF03007649
- M. Sharir, A note on extreme elements in $A_{0}(K,\,E)$, Proc. Amer. Math. Soc. 46 (1974), 244–246. MR 374879, DOI 10.1090/S0002-9939-1974-0374879-0
- Barry Turett, Rotundity of Orlicz spaces, Indag. Math. 38 (1976), no. 5, 462–469. Nederl. Akad. Wetensch. Proc. Ser. A 79. MR 0428028, DOI 10.1016/S1385-7258(76)80010-8
- Dirk Werner, Extreme points in function spaces, Proc. Amer. Math. Soc. 89 (1983), no. 4, 598–600. MR 718980, DOI 10.1090/S0002-9939-1983-0718980-3
- Dirk Werner, Extreme points in spaces of operators and vector-valued measures, Proceedings of the 12th winter school on abstract analysis (Srní, 1984), 1984, pp. 135–143. MR 781945
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 611-614
- MSC: Primary 46E40; Secondary 46A55, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861761-3
- MathSciNet review: 861761