The parametric Gauss-Green theorem
HTML articles powered by AMS MathViewer
- by M. Ortel and W. Schneider
- Proc. Amer. Math. Soc. 98 (1986), 615-618
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861762-5
- PDF | Request permission
Abstract:
A strong parametric Gauss-Green theorem, for chains homologous to zero in a plane region, follows directly from an interchange in order of integrations.References
- John D. Dixon, A brief proof of Cauchy’s integral theorem, Proc. Amer. Math. Soc. 29 (1971), 625–626. MR 277699, DOI 10.1090/S0002-9939-1971-0277699-8
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- J. H. Michael, An approximation to a rectifiable plane curve, J. London Math. Soc. 30 (1955), 1–11. MR 66445, DOI 10.1112/jlms/s1-30.1.1
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 615-618
- MSC: Primary 30E20; Secondary 30A99
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861762-5
- MathSciNet review: 861762