On infinite-dimensional features of proper and closed mappings
HTML articles powered by AMS MathViewer
- by R. S. Sadyrkhanov
- Proc. Amer. Math. Soc. 98 (1986), 643-648
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861768-6
- PDF | Request permission
Abstract:
We consider some global properties of continuous proper and closed maps acting in infinite-dimensional Fréchet manifolds. These essentially infinite-dimensional features are related to the following questions: 1. When is a closed map proper? 2. When can the "singularity set" of the map, i.e. the subset of the domain of definition where the map is not a local homeomorphism, be deleted? We establish the final answer to the first question and an answer to the second one when the singular set is a countable union of compact sets.References
- Melvin Henriksen and J. R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83–105. MR 96196
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250 Yu. G. Borisovich, W. G. Zvyaguin and Yu. I. Sapronov, Non-linear Fredholm mappings and Leray-Shauder theory, Russian Math. Surveys 32 (1977), no. 4, 3-54. (Russian)
- James Dugundji and Andrzej Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR 660439
- Ernest Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163–171. MR 62424
- E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173–176. MR 177396, DOI 10.1007/BF02759940
- William H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675. MR 248883, DOI 10.1090/S0002-9939-1969-0248883-5
- Philip T. Church and Erik Hemmingsen, Light open maps on $n$-manifolds, Duke Math. J. 27 (1960), 527–536. MR 116315
- R. S. Sadyrkhanov, A condition for a mapping to be a local homeomorphism, Dokl. Akad. Nauk SSSR 275 (1984), no. 6, 1316–1320 (Russian). MR 746378 S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), 174-178.
- M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1316–1318. MR 451279, DOI 10.1090/S0002-9904-1977-14431-5
- R. A. Plastock, Nonlinear Fredholm maps of index zero and their singularities, Proc. Amer. Math. Soc. 68 (1978), no. 3, 317–322. MR 464283, DOI 10.1090/S0002-9939-1978-0464283-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 643-648
- MSC: Primary 58C15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861768-6
- MathSciNet review: 861768