Approximate selections and fixed points for upper semicontinuous maps with decomposable values
HTML articles powered by AMS MathViewer
- by Arrigo Cellina, Giovanni Colombo and Alessandro Fonda
- Proc. Amer. Math. Soc. 98 (1986), 663-666
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861771-6
- PDF | Request permission
Abstract:
We prove the existence of continuous approximate selections of upper semicontinuous maps from a separable locally compact metric space $S$ into the decomposable subsets of ${L^1}(T,Z)$. We then extend a fixed point theorem of Kakutani to upper semicontinuous maps with decomposable values.References
- H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), no. 2, 386–398. MR 430368, DOI 10.1016/0022-0396(75)90011-X A. Cellina, A fixed point theorem for subsets of ${L^1}$, Cahiers Ceremade 8205 (1982).
- Andrzej Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), no. 2, 163–174. MR 730018, DOI 10.4064/sm-76-2-163-174
- Andrzej Fryszkowski, The generalization of Cellina’s fixed point theorem, Studia Math. 78 (1984), no. 2, 213–215. MR 766717, DOI 10.4064/sm-78-2-213-215
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6
- Fumio Hiai and Hisaharu Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149–182. MR 507504, DOI 10.1016/0047-259X(77)90037-9
- Czesław Olech, Decomposability as a substitute for convexity, Multifunctions and integrands (Catania, 1983) Lecture Notes in Math., vol. 1091, Springer, Berlin, 1984, pp. 193–205. MR 785586, DOI 10.1007/BFb0098812
- R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539. MR 236689
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 663-666
- MSC: Primary 54C60; Secondary 28B20, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861771-6
- MathSciNet review: 861771