General position theorems for generalized manifolds
HTML articles powered by AMS MathViewer
- by J. L. Bryant
- Proc. Amer. Math. Soc. 98 (1986), 667-670
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861772-8
- PDF | Request permission
Abstract:
It is an open question as to whether a generalized $n$-manifold, $n \geqslant 5$, that satisfies the disjoint disks property is a topological manifold. In this paper it is shown that any such space $X$ satisfies general position properties for maps of polyhedra into $X$.References
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46–51. MR 244973, DOI 10.1090/S0002-9939-1969-0244973-1
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- Robert J. Daverman and John J. Walsh, A ghastly generalized $n$-manifold, Illinois J. Math. 25 (1981), no. 4, 555–576. MR 630833
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Frank Quinn, Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983), no. 2, 267–284. MR 700771, DOI 10.1007/BF01389323 —, An obstruction to the resolutions of homology manifolds, preprint.
- M. A. Štan′ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234–255 (Russian). MR 0271923 J. Walsh, General position properties of generalized manifolds: a primer, Proc. Idaho State Topology Conf., 1985.
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 667-670
- MSC: Primary 57P05; Secondary 57N75, 57Q65
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861772-8
- MathSciNet review: 861772