Locally compact normal meta-Lindelöf spaces may not be paracompact: an application of uniformization and Suslin lines
HTML articles powered by AMS MathViewer
- by Stephen Watson
- Proc. Amer. Math. Soc. 98 (1986), 676-680
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861774-1
- PDF | Request permission
Abstract:
We show that it is consistent with and independent of the continuum hypothesis (and its negation) that there is a locally compact (perfectly) normal metalindelöf space which is not paracompact. The constructions replace each point in an $\omega$-uniformizable family with a Suslin line.References
- A. V. Arhangel′skiĭ, The property of paracompactness in the class of perfectly normal locally bicompact spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1231–1234 (Russian). MR 0305342
- Franklin D. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Canadian J. Math. 26 (1974), 1–6. MR 377823, DOI 10.4153/CJM-1974-001-8
- W. Stephen Watson, Locally compact normal spaces in the constructible universe, Canadian J. Math. 34 (1982), no. 5, 1091–1096. MR 675681, DOI 10.4153/CJM-1982-078-8
- Peg Daniels, Normal, locally compact, boundedly metacompact spaces are paracompact: an application of Pixley-Roy spaces, Canad. J. Math. 35 (1983), no. 5, 807–823. MR 735898, DOI 10.4153/CJM-1983-046-x S. Shelah, Whitehead groups may not be free. I and II, Israel J. Math. 28 (1977), 193-204; 35 (1980), 257-285.
- Zoltán T. Balogh, Paracompactness in locally Lindelöf spaces, Canad. J. Math. 38 (1986), no. 3, 719–727. MR 845674, DOI 10.4153/CJM-1986-037-7
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2 B. Šapirovskiĭ, Canonical sets and character, Density and weight in compact spaces, Soviet Math. Dokl. 15 (1974), 1282-1287.
- Franklin D. Tall, Collectionwise normality without large cardinals, Proc. Amer. Math. Soc. 85 (1982), no. 1, 100–102. MR 647907, DOI 10.1090/S0002-9939-1982-0647907-7
- Kenneth Kunen and Franklin D. Tall, Between Martin’s axiom and Souslin’s hypothesis, Fund. Math. 102 (1979), no. 3, 173–181. MR 532951, DOI 10.4064/fm-102-3-173-181
- Franklin D. Tall, The countable chain condition versus separability—applications of Martin’s axiom, General Topology and Appl. 4 (1974), 315–339. MR 423284, DOI 10.1016/0016-660X(74)90010-5
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 676-680
- MSC: Primary 54D15; Secondary 03E35, 54A35, 54D18, 54D45, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861774-1
- MathSciNet review: 861774