DENSITIES FOR RANKS OF CERTAIN PARTS OF \(p\)-CLASS GROUPS

FRANK GERTH III

Abstract. Let \(K\) be a Galois extension of the field of rational numbers of prime degree \(p\), and let \(C_K\) be the \(p\)-class group of \(K\). In this paper densities for the ranks of certain parts of such \(C_K\) are calculated, and these densities suggest a way to extend conjectures of Cohen and Lenstra.

1. Introduction. Let \(p\) be a prime number, and let \(Q\) denote the field of rational numbers. Let \(K\) be a Galois extension of \(Q\) such that \(\text{Gal}(K/Q)\) is a cyclic group of order \(p\). Let \(C_K\) denote the \(p\)-class group of \(K\); i.e., the Sylow \(p\)-subgroup of the ideal class group of \(K\). (For \(p = 2\), we shall be using the Sylow 2-subgroup of the narrow ideal class group of \(K\).) Let \(\sigma\) be a generator of \(\text{Gal}(K/Q)\), and let \(C_K^{(1-\sigma)^r} = \{a^{(1-\sigma)^r}: a \in C_K\}\) for \(r = 0, 1, 2, \ldots\). Suppose exactly \(t\) primes ramify in \(K/Q\). It is a classical result that \(C_K/C_K^{1-\sigma}\) is an elementary abelian \(p\)-group with rank equal to \(t - 1\). Furthermore, \(C_K^{(1-\sigma)^r}/C_K^{(1-\sigma)^{r+1}}\) is an elementary abelian \(p\)-group of each \(i\), and

\[
\text{rank } C_K = \text{rank}(C_K/C_K^p) = \sum_{i=1}^{p-1} \text{rank}(C_K^{(1-\sigma)^i}/C_K^{(1-\sigma)^{i+1}}),
\]

where \(C_K^p = \{a^p: a \in C_K\}\) (cf. [9, Proposition 4.2 and 11, Satz 6]). Since we know that \(\text{rank } C_K/C_K^{1-\sigma} = t - 1\), we shall focus our attention on \(C_K^{1-\sigma}/C_K^{(1-\sigma)^2}\). If we let \(R_K = \text{rank}(C_K^{1-\sigma}/C_K^{(1-\sigma)^2})\), then \(0 \leq R_K \leq t - 1\). In this paper we shall consider the following question: how likely is \(R_K = 0, R_K = 1, R_K = 2, \ldots\), as \(t \to \infty\).

2. Statement of main results. Let notation be the same as in §1. For each positive integer \(t\), each nonnegative integer \(r\), and each positive real number \(x\), we define

\[
A_t = \{\text{cyclic extensions } K \text{ of } Q \text{ of degree } p \text{ with exactly } t \text{ ramified primes}\}
\]

(when \(p = 2\), we shall consider separately the imaginary and real quadratic fields)

\[
A_{t,x} = \{K \in A_t: \text{the conductor of } K \text{ is } \leq x\},
\]

\[
A_{t,r,x} = \{K \in A_{t,x}: R_K = r\}.
\]

Then we define the density \(d_{t,r}\) by

\[
(1) \quad d_{t,r} = \lim_{x \to \infty} \frac{|A_{t,r,x}|}{|A_{t,x}|}.
\]
where $|S|$ denotes the cardinality of a set S. We then define the limit density d_x, r by

$$d_x, r = \lim_{t \to \infty} d_{t, r}.$$

Our theorems will show that these limits exist and will provide the values for these limits. For $p = 2$, we have obtained the following result in [6, Theorems 4.3 and 5.11].

Theorem 1. For imaginary quadratic fields,

$$d_x, r = \frac{2^{-r} \prod_{k=1}^{\infty} (1 - 2^{-k})}{\prod_{k=1}^{r} (1 - 2^{-k})^2} \text{ for } r = 0, 1, 2, \ldots.$$

For real quadratic fields,

$$d_x, r = \frac{2^{-r(r+1)} \prod_{k=1}^{\infty} (1 - 2^{-k})}{\prod_{k=1}^{r} (1 - 2^{-k})^{r+1} \prod_{k=1}^{r+1} (1 - 2^{-k})} \text{ for } r = 0, 1, 2, \ldots.$$

Remark. When $p = 2$,

$$R_K = \text{rank}(C_K^{1-\alpha}/C_K^{(1-\alpha)^2}) = \text{rank}(C_K^2/C_K^4) = 4\text{-class rank of } C_K.$$

So Theorem 1 gives limit densities for the 4-class ranks of imaginary and real quadratic fields.

Our goal in this paper is to prove the following theorem.

Theorem 2. Suppose $p \geq 3$. Then

$$d_x, r = \frac{p^{-r(r+1)} \prod_{k=1}^{\infty} (1 - p^{-k})}{\prod_{k=1}^{r} (1 - p^{-k})^{r+1} \prod_{k=1}^{r+1} (1 - p^{-k})} \text{ for } r = 0, 1, 2, \ldots.$$

Values for d_x, r for small p and r appear in the Appendix.

3. Proof of Theorem 2. We let notation be the same as in §§1 and 2, and we assume $p \geq 3$. First we note that the fields K in $A_{t; x}$ have conductor $f_K = p^r p_1 \cdots p_{r-1}$ or $f_K = p_1 \cdots p_r$, where p_1, \ldots, p_r are distinct rational primes with each $p_i \equiv 1 \pmod{p}$. We can ignore the fields K with $f_K = p^r p_1 \cdots p_{r-1} < x$ when calculating $d_{t, r}$ since the number of such fields is

$$O\left(\frac{x(\log \log x)^{t-2}}{\log x}\right), \text{ while } |A_{t; x}| \gg \frac{x(\log \log x)^{t-1}}{\log x}.$$

(cf. [10, Theorem 437 and 4, p. 201]). For each field K with $f_K = p_1 \cdots p_r$, we introduce a $t \times t$ matrix M_K whose entries m_{ij} are defined in terms of Hilbert symbols by

$$\omega^{m_{ij}} = \begin{pmatrix} p_{ij} & \mu_K \\ \varphi_{ij} & 1 \end{pmatrix} \text{ for } 1 \leq i \leq t, 1 \leq j \leq t,$$

where ω is a primitive pth root of unity, φ_{ij} is a prime of $F = \mathbb{Q}(\omega)$ above p_{ij}, and μ_K is an element of F satisfying $KF = F(\mu_K^{1/p})$. (See [3, p. 197] for more details.) We view M_K as a matrix over \mathbb{F}_p, the finite field with p elements. It is known that $R_K = t - 1 - \text{rank } M_K$ (cf. [9, Proposition 4.6, Proposition 4.7, and IV B 4, p. 45]).
Using this fact, we have in effect determined $d_{t,r}$ in [5]. To be more precise, $d_{t,r}$ in (1) corresponds to $B_{t,e}$ in [5, Equation 2.2]. So

$$d_{t,r} = \left(\prod_{j=1}^{t-1-r} \left(1 - \frac{1}{p^{r+1-j}} \right) \right) \cdot \frac{1}{p^{t^r}} \cdot \sum_{i_1 + \cdots + i_{t-1-r} \leq r \atop \text{each } i_i \geq 0} \left(\prod_{s=1}^{t-1-r} p^{w_s} \right).$$

(When $r = t - 1$, $d_{t,t-1} = p^{-(t-1)}$.) The main ideas used in proving (3) can be explained as follows. Let J be any $t \times t$ matrix with coefficients in F_p and with the sum of the entries in each column of J equal to 0. Let

$$N_J(x) = |\{ K : MK = J \text{ and } f_K \leq x \}|.$$

Then $N_J(x) = h(x) + o(h(x))$, where $h(x)$ is a function that is independent of J. (This corresponds to equidistribution of the Hilbert symbols. See [3, p. 196 and pp. 200–206] for more details.) It follows that

$$\sum_{J}^{(r)} N_J(x) = \sum_{J}^{(r)} 1 + o(1)$$

where $\sum_{J}^{(r)}$ denotes a sum over those J with rank $J = t - 1 - r$. Hence

$$d_{t,r} = \frac{\sum_{J}^{(r)} 1}{\sum_{J}^{(r)}}.$$

This rational number is calculated in [5] and is given by (3).

We must show that $\lim_{t \to \infty} d_{t,r}$ has the value given by Theorem 2. We let $k = t + 1 - j$ and $w = t - 1 - r$. Then

$$d_{t,r} = \left[\prod_{k=r+2}^{t} \left(1 - \frac{1}{p^k} \right) \right] \cdot \frac{1}{p^{r(r+1)p^{wr}}} \cdot \sum_{i_1 + \cdots + i_w \leq r \atop \text{each } i_i \geq 0} \left[\prod_{k=1}^{r} \left(1 - p^{-k} \right) \right] \cdot \left[\prod_{k=1}^{r} \left(1 - p^{-k} \right) \right]^{-1} \cdot \left[\prod_{k=1}^{r} \left(1 - p^{-k} \right) \right]^{-1},$$

and then

$$d_{\infty,r} = \left[\frac{p^{-r(r+1)} \prod_{k=1}^{r} \left(1 - p^{-k} \right)}{\prod_{k=1}^{r} \left(1 - p^{-k} \right)} \right] \cdot \left[\lim_{w \to \infty} \frac{1}{p^{w^r}} \sum_{i_1 + \cdots + i_w \leq r \atop \text{each } i_i \geq 0} \left[\prod_{k=1}^{r+1} \left(1 - p^{-k} \right) \right]^{-1} \cdot \left[\prod_{k=1}^{r+1} \left(1 - p^{-k} \right) \right]^{-1} \right].$$

If $r = 0$, then $d_{\infty,0}$ in (4) is the same as $d_{\infty,0}$ in the statement of Theorem 2. So we may assume $r \geq 1$. To evaluate the limit in (4), we shall use the following lemma.

Lemma. Let w and m be positive integers, and let

$$F_{w,m} = \frac{1}{p^{wm}} \sum_{i_1 + \cdots + i_w = m \atop \text{each } i_i \geq 0} \left[\prod_{k=1}^{r+1} \left(1 - p^{-k} \right) \right]^{-1}.$$

Then

$$\lim_{w \to \infty} F_{w,m} = \prod_{k=1}^{m} (1 - p^{-k})^{-1}.$$
Proof. First we note that
\[F_{w,m} = \sum_{i_1 + \cdots + i_w = m} p^{(1-w)i_1 + (2-w)i_2 + \cdots + (-1)i_{w-1} + 0i_w} \]
since \(\frac{1}{p^{w_m}} = p^{-w(i_1 + \cdots + i_w)} \). Also we note that \(F_{w,m} \) appears in \(F_{w+1,m} \) exactly as those terms having \(i_1 = 0 \). Then
\[\lim_{w \to \infty} F_{w,m} = \sum_{l=0}^{\infty} b_{l,m} p^{-l}, \]
where \(b_{l,m} \) is the number of times that
\[l = (w - 1)i_1 + (w - 2)i_2 + \cdots + 1i_{w-1} + 0i_w \]
for some \(w \). Since \(i_1 + \cdots + i_{w-1} \leq m \), such an expression can be associated to a partition of \(l \) into at most \(m \) parts. Conversely, given such a partition, we can let \(w - 1 \) be the largest integer appearing in it and let \(i_s \) be the number of times \(w - s \) appears, \(1 \leq s \leq w - 1 \). So \(b_{l,m} \) is the number of partitions of \(l \) into at most \(m \) parts. Next we observe that
\[\prod_{k=1}^{m} (1 - p^{-k})^{-1} = \prod_{k=1}^{m} (1 + p^{-k} + p^{-2k} + \cdots) \]
\[= \sum_{j_1, j_2, \ldots, j_m \geq 0} p^{-1j_1 - 2j_2 - \cdots - mj_m} = \sum_{l=0}^{\infty} c_{l,m} p^{-l}, \]
where \(c_{l,m} \) is the number of times that \(l = 1j_1 + 2j_2 + \cdots + mj_m \). But then \(c_{l,m} \) is the number of partitions of \(l \) into parts with each part at most \(m \). From \([10, \text{Theorem 343}]\), \(b_{l,m} = c_{l,m} \) for all \(l \) and \(m \), and hence the lemma is proved.

Now applying the Lemma to the sum in (4), we get
\[\lim_{w \to \infty} \frac{1}{p^{w}} \sum_{i_1 + \cdots + i_r \leq r} p^{i_1 + 2i_2 + \cdots + wi_w} = \lim_{w \to \infty} \left[\frac{1}{p^{w-r}} + \sum_{m=1}^{r} \frac{1}{p^{w-(r-m)}} F_{w,m} \right] \]
\[= \lim_{w \to \infty} F_{w,r} = \prod_{k=1}^{r} (1 - p^{-k})^{-1}, \]
which completes the proof of Theorem 2.

4. Cohen-Lenstra Conjectures. We let notation be the same as in previous sections. In \([1]\) Cohen and Lenstra have made various conjectures that apply to the prime to \(p \) part of the class groups for Galois extensions of \(\mathbb{Q} \) of degree \(p \). Since our results apply to the \(p \) part of the class groups, our results do not prove or disprove any of the Cohen-Lenstra Conjectures. However, our results do have an interesting relationship with the Cohen-Lenstra Conjectures. To describe this relationship, we first let \(S_K \) be the narrow ideal class group of \(K \), and we let \(H_K = S_K^{1-S} \), which is the narrow principal genus of \(K \) for the fields \(K \) we are considering. Then our Theorems 1 and 2 appear to be what would be predicated if we assumed that Fundamental Assumptions 8.1 and Theorem 6.3 in \([1]\) apply to \(H_K \). Actually the appropriate Cohen-Lenstra
probability is defined in a different way than our density $d_{\infty, r}$. More precisely, let

$$d_r = \lim_{x \to \infty} \left(\sum_{K} \frac{1}{|D_K|^{s, x}} + \sum_{K} \frac{1}{|D_K|^{s, x}} \right)$$

where K ranges over the Galois extensions of \mathbb{Q} of degree p, D_K is the discriminant of K, and R_K is defined in §1. (When $p = 2$, the real and imaginary quadratic fields are handled separately.) This Cohen-Lenstra probability d_r omits all reference to the number t of ramified primes and deals with the discriminant D_K instead of the conductor f_K. Since $|D_K| = f_K^{p-1}$, there is no difficulty in passing from the conductor to the discriminant. So we see that

$$d_r = \lim_{x \to \infty} \left(\sum_{s=1}^{\infty} |A_{s, r; x}| / \sum_{s=1}^{\infty} |A_{s; x}| \right).$$

(Note that for each x the above sums are finite.) However,

$$d_{\infty, r} = \lim_{t \to \infty} d_{t, r} = \lim_{t \to \infty} \lim_{x \to \infty} \left(\frac{1}{|A_{t, r; x}|} \right).$$

Since for fixed t and $s < t$, $|A_{s, r; x}| = o(|A_{t, r; x}|)$ and $|A_{s; x}| = o(|A_{t; x}|)$ as $x \to \infty$ (cf. [5, Propositions 3.3 and 3.4 and 6, Propositions 2.1 and 5.1]), then

$$d_{\infty, r} = \lim_{t \to \infty} \lim_{x \to \infty} \left(\frac{1}{\sum_{s=1}^{t} |A_{s, r; x}|} \right).$$

From (5) and (6), it seems plausible that $d_r = d_{\infty, r}$, although a proof would involve more detailed estimates with explicit dependence on t carefully analyzed.

Now assuming $d_r = d_{\infty, r}$, our results suggest that the Cohen-Lenstra Conjectures should be extended to include all of the narrow principal genus for Galois extensions of \mathbb{Q} of prime degree p. In particular, the conjectures in §9 of [1] could be extended to all of the narrow principal genus. As an example we mention how conjecture (C14) in [1] could be extended.

Conjecture (C14'). For totally real Galois extensions of \mathbb{Q} of prime degree p (including $p = 2$), the probability $Z(p)$ that the narrow principal genus is trivial is given by

$$Z(p) = \prod_{k=2}^{\infty} \left(\zeta_{\mathbb{Q}(\sqrt[p]{1})}(k) \right)^{-1}$$

where $\zeta_{\mathbb{Q}(\sqrt[p]{1})}(s)$ is the Dedekind zeta function of the cyclotomic field $\mathbb{Q}(\sqrt[p]{1})$.

Some numerical values of $Z(p)$ are as follows: $Z(2) = 0.436$, $Z(3) = 0.714$, $Z(5) = 0.903$, and $Z(7) = 0.929$. Also $\lim_{p \to \infty} Z(p) = 1$ (cf. [1, p. 58]). So for large p, one should expect the narrow principal genus to be trivial.

Remark. The Cohen-Lenstra Conjectures should also apply to the usual principal genus, not just the narrow principal genus (cf. [6, p. 491]).
5. Estimate of a character sum. Our proof of Theorem 2 depends on results from [3 and 5]. In the proof of Lemma 3 in [3], we used a certain character sum estimate (see bottom of p. 202 in [3]) that was derived in a preliminary version of [7], but this particular character sum estimate was not included in the final version of [7]. So for the sake of completeness, we sketch a proof of that character sum estimate.

The basic reference for the techniques for this character sum estimate is [2]. We suppose that \(\lambda \) is a nonprincipal Dirichlet character with exponent \(l \) and conductor \(p_1 \cdots p_s \), where \(l \) is a prime and \(p_1, \ldots, p_s \) are distinct primes. We let \(x \) be a large real number, \(q = p_1 \cdots p_s \), \(y = x/q \), and

\[
z = \exp\left[\frac{\log x}{b \log \log x} \right],
\]

where \(b \) is a constant to be specified later. We assume \(q \leq z \). We want to show

\[
\sum_{p \leq y} \lambda(p) = O\left(\frac{y}{(\log qy)^2} \right)
\]

where the sum ranges over all primes \(p \leq y \). Note that we need only estimate \(\sum_{(qy)^{1/2} < p \leq y} \lambda(p) \) since \(q \leq z \) and \(y = x/q \) imply \((qy)^{1/2} = O(y/(\log qy)^2) \). Now

\[
\sum_{(qy)^{1/2} < p \leq y} \lambda(p) = \sum_{m \geq 1} \frac{\lambda(p^m) \log p}{\log(p^m)} - \sum_{m \geq 2} \frac{\lambda(p^m) \log p}{\log(p^m)}
\]

\[
= \sum_{(qy)^{1/2} < n \leq y} \frac{\lambda(n) \Lambda(n)}{\log n} + O(y^{1/2})
\]

where

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n \text{ is a power of a prime } p, \\
0 & \text{otherwise.}
\end{cases}
\]

Using partial summation (cf. [10, Theorem 421]), we see that (7) will be proved if we can show that

\[
\sum_{n \leq y} \lambda(n) \Lambda(n) = O\left(\frac{y}{(\log qy)} \right).
\]

From [2, p. 126], we have

\[
\sum_{n \leq y} \lambda(n) \Lambda(n) = -\frac{y^\beta}{\beta} + R(y, T)
\]

where

\[
|R(y, T)| \ll y(\log qy)^2 \exp\left[-c(\log y)/(\log qT) \right] + yT^{-1}(\log qy)^2 + y^{1/4}(\log y).
\]

In formulas (9) and (10), \(T \) is a parameter we are free to choose; \(q \) is the conductor of \(\lambda \); and \(c \) is a positive absolute constant. The term with \(y^\beta \) in (9) can occur only if \(\lambda \) is an “exceptional” real character (and hence \(l = 2 \)). If \(\lambda \) is an exceptional character, then (8) may not be valid. However, we do know that

\[
\beta < 1 - c_1/q^{1/2}(\log q)^2
\]
for some positive absolute constant c_1 (see [2, p. 99]). Then one can show that $y^\beta = O(x/(\log x)^{1+\gamma})$ for some $\gamma > 0$. When sums are subsequently taken over the conductors $q = p_1 \cdots p_s$, fortunately the exceptional conductors are rather sparse. If these exceptional conductors are $q_0 < q_1 < q_2 < \cdots$, then $q_{j+1} > q_j^2$ for each j (see [2, p. 98]), and so $q_j > \exp(2^j)$ for each j. Since $q_j \leq \exp(\log x/(b \log \log x))$, then $j = O(\log \log x)$, and hence the total contribution of all y^β/β can be incorporated into the final error term $o(x(\log \log x)^{\gamma}/(\log x))$ (cf. Lemma 3 of [3]).

It remains to show that $|R(y,T)| \ll y/(\log qy)$. By choosing $T = (\log qy)^3$, we see that the second and third terms on the right side of (10) are $\ll y/(\log qy)$. Now

$$
y(\log qy)^2 \exp \left[c \log qy \right]/(\log qy) \ll y(\log qy)^2 \exp \left[\frac{c \log \left((qy)^{1-\delta} \right)}{(\log qy)/(b \log qy)) + 3(\log \log qy)} \right]
$$

for any $0 < \delta < 1$. We let ϵ satisfy $0 < \epsilon < (1/3)c(1-\delta)$. We choose y large enough so that

$$3(\log \log qy) < \epsilon(\log qy)/(\log qy),$$

and we choose $b > 0$ so that $c(1 - \delta) \geq 3((1/b) + \epsilon)$. Then

$$y(\log qy)^2 \exp[-c(\log y)/(\log qT)] \ll y/(\log qy),$$

and hence $|R(y,T)| \ll y/(\log qy)$.

In [3], where $l \geq 3$, (7) is needed for the slightly more general case of Hecke characters over $Q(\exp(2\pi i/l))$ instead of Dirichlet characters. However, the methods are essentially the same as those used for Dirichlet characters (e.g., compare the methods in Chapter 14 of [8] with the methods in [2]). Furthermore there are no exceptional characters when $l \geq 3$.

ACKNOWLEDGMENT. The author thanks the referee for several helpful suggestions.

APPENDIX. Some values for $d_{\infty,r}$ in Theorems 1 and 2 are given below.

<table>
<thead>
<tr>
<th>p</th>
<th>r</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.288788</td>
<td>0.577576</td>
<td>0.128350</td>
<td>0.005239</td>
<td>4.7 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.577576</td>
<td>0.385051</td>
<td>0.036672</td>
<td>0.000699</td>
<td>3.0 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.840189</td>
<td>0.157535</td>
<td>0.002272</td>
<td>3.3 x 10^{-6}</td>
<td>5.1 x 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.950416</td>
<td>0.049501</td>
<td>8.3 x 10^{-5}</td>
<td>5.4 x 10^{-9}</td>
<td>1.4 x 10^{-14}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.976261</td>
<td>0.023729</td>
<td>1.0 x 10^{-5}</td>
<td>8.6 x 10^{-11}</td>
<td>1.5 x 10^{-17}</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Department of Mathematics, University of Texas, Austin, Texas 78712