Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A short proof of Cauchy’s polygonal number theorem


Author: Melvyn B. Nathanson
Journal: Proc. Amer. Math. Soc. 99 (1987), 22-24
MSC: Primary 11B83
DOI: https://doi.org/10.1090/S0002-9939-1987-0866422-3
MathSciNet review: 866422
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a simple proof that every nonnegative integer is the sum of $m + 2$ polygonal numbers of order $m + 2$.


References [Enhancements On Off] (What's this?)

    A. Cauchy, Démonstration du théorème général de Fermat sur les nombres polygones, Mém. Sci. Math. Phys. Inst. France (1) 14 (1813-15), 177-220 = Oeuvres (2), vol. 6, 320-353.
  • L. E. Dickson, All positive integers are sums of values of a quadratic function of $x$, Bull. Amer. Math. Soc. 33 (1927), no. 6, 713–720. MR 1561454, DOI https://doi.org/10.1090/S0002-9904-1927-04464-0
  • P. Fermat, quoted in T. L. Heath, Diophantus of Alexandria, Dover, New York, 1964, p. 188.
  • Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 0197380
  • J. L. Lagrange, DĂ©monstration d’un thĂ©orème d’arithmĂ©tique, Nouveaux MĂ©moires de l’Acad. Royale des Sci. et Belles-L. de Berlin, 1770, pp. 123-133 = Oeuvres, vol. 3, pp. 189-201. A.-M. Legendre, ThĂ©orie des nombres, 3rd ed., vol. 2, 1830, pp. 331-356.
  • Gordon Pall, Large Positive Integers are Sums of Four or Five Values of a Quadratic Function, Amer. J. Math. 54 (1932), no. 1, 66–78. MR 1506873, DOI https://doi.org/10.2307/2371077
  • T. Pepin, DĂ©monstration du thĂ©orème de Fermat sur les nombres polygones, Atti Accad. Pont. Nuovi Lincei 46 (1892-93), 119-131. J. V Uspensky and M. A. Heaslet, Elementary number theory, McGraw-Hill, New York and London, 1939.
  • AndrĂ© Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11B83

Retrieve articles in all journals with MSC: 11B83


Additional Information

Keywords: Polygonal numbers, sums of squares, Cauchy-Fermat theorem
Article copyright: © Copyright 1987 American Mathematical Society