A short proof of Cauchy’s polygonal number theorem
HTML articles powered by AMS MathViewer
- by Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 99 (1987), 22-24
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866422-3
- PDF | Request permission
Abstract:
This paper presents a simple proof that every nonnegative integer is the sum of $m + 2$ polygonal numbers of order $m + 2$.References
- A. Cauchy, Démonstration du théorème général de Fermat sur les nombres polygones, Mém. Sci. Math. Phys. Inst. France (1) 14 (1813-15), 177-220 = Oeuvres (2), vol. 6, 320-353.
- L. E. Dickson, All positive integers are sums of values of a quadratic function of $x$, Bull. Amer. Math. Soc. 33 (1927), no. 6, 713–720. MR 1561454, DOI 10.1090/S0002-9904-1927-04464-0 P. Fermat, quoted in T. L. Heath, Diophantus of Alexandria, Dover, New York, 1964, p. 188.
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 0197380 J. L. Lagrange, Démonstration d’un théorème d’arithmétique, Nouveaux Mémoires de l’Acad. Royale des Sci. et Belles-L. de Berlin, 1770, pp. 123-133 = Oeuvres, vol. 3, pp. 189-201. A.-M. Legendre, Théorie des nombres, 3rd ed., vol. 2, 1830, pp. 331-356.
- Gordon Pall, Large Positive Integers are Sums of Four or Five Values of a Quadratic Function, Amer. J. Math. 54 (1932), no. 1, 66–78. MR 1506873, DOI 10.2307/2371077 T. Pepin, Démonstration du théorème de Fermat sur les nombres polygones, Atti Accad. Pont. Nuovi Lincei 46 (1892-93), 119-131. J. V Uspensky and M. A. Heaslet, Elementary number theory, McGraw-Hill, New York and London, 1939.
- André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177, DOI 10.1007/978-0-8176-4571-7
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 22-24
- MSC: Primary 11B83
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866422-3
- MathSciNet review: 866422