Let $m \geq 1$. The polygonal numbers of order $m + 2$ are the integers

$$p_m(k) = \frac{m}{2} (k^2 - k) + k$$

for $k = 0, 1, 2, \ldots$. Fermat [3] asserted that every nonnegative integer is the sum of $m + 2$ polygonal numbers of order $m + 2$. For $m = 2$, Lagrange [5] proved that every nonnegative integer is the sum of four squares $p_2(k) = k^2$. For $m = 1$, Gauss [4] proved that every nonnegative integer is the sum of three triangular numbers $p_1(k) = (k^2 + k)/2$, or, equivalently, that every positive integer $n \equiv 3 \pmod{8}$ is the sum of three odd squares. Cauchy [1] proved Fermat's statement for all $m \geq 3$, and Legendre [6] refined and extended this result. For $m \geq 3$ and $n \leq 120m$, Pepin [8] published tables of explicit representations of n as a sum of $m + 2$ polygonal numbers of order $m + 2$, at most four of which are different from 0 or 1. Dickson [2] prepared similar tables. Pall [7] obtained important related results on sums of values of a quadratic polynomial.

Uspensky and Heaslet [9, p. 380] and Weil [10, p. 102] have written that there is no short and easy proof of Cauchy's polygonal number theorem. The object of this note is to present a short and easy proof.

Because of Pepin's and Dickson's tables, it suffices to consider only $n \geq 120m$. For completeness, I also include a proof of Cauchy's lemma.

Cauchy's Lemma. Let a and b be odd positive integers such that $b^2 < 4a$ and $3a < b^2 + 2b + 4$. Then there exist nonnegative integers s, t, u, v such that

1. $a = s^2 + t^2 + u^2 + v^2$,
2. $b = s + t + u + v$.

Proof. Since a and b are odd, it follows that $4a - b^2 \equiv 3 \pmod{8}$, and so, by Gauss's triangular number theorem, there exist odd integers $x \geq y \geq z > 0$ such that

$$4a - b^2 = x^2 + y^2 + z^2.$$
Choose the sign of $\pm z$ so that $b + x + y \pm z \equiv 0 \pmod{4}$. Define integers s, t, u, v by

$$s = \frac{b + x + y \pm z}{4}, \quad t = \frac{b + x}{2} - s = \frac{b + x - y \mp z}{4},$$

$$u = \frac{b + y}{2} - s = \frac{b - x + y \pm z}{4}, \quad v = \frac{b \pm z}{2} - s = \frac{b - x - y \mp z}{4}.$$

Then equations (1) and (2) are satisfied, and $s \geq t \geq u \geq v$. To show these integers are nonnegative, it suffices to prove that $v \geq 0$, or $v > 1$. This is true if $b - x - y - z > -4$, or, equivalently, if $x + y + z < b + 4$. The maximum value of $x + y + z$ subject to the constraint (3) is $\sqrt{12a - 3b^2}$, and the inequality $3a < b^2 + 2b + 4$ implies that $x + y + z < \sqrt{12a - 3b^2} < b + 4$. This proves the lemma.

THEOREM 1. Let $m \geq 3$ and $n \geq 120m$. Then n is the sum of $m + 1$ polygonal numbers of order $m + 2$, at most four of which are different from 0 or 1.

Proof. Let b_1 and b_2 be consecutive odd integers. The set of numbers of the form $b + r$, where $b \in \{b_1, b_2\}$ and $r \in \{0, 1, \ldots, m - 3\}$, contains a complete set of residue classes modulo m, and so $\mathbb{n} = b + r \pmod{\mathbb{m}}$ for some $b \in \{b_1, b_2\}$ and $r \in \{0, 1, \ldots, m - 3\}$. Define

$$a = 2\left(\frac{n - b - r}{m}\right) + b = \left(1 - \frac{2}{m}\right)b + 2\left(\frac{n - r}{m}\right).$$

Then a is an odd integer, and

$$n = \frac{m}{2}(a - b) + b + r.$$

If $0 < b < 1 + \frac{3}{8}(1/m) - 8$, then the quadratic formula implies that

$$b^2 - 4a = b^2 - 4\left(1 - \frac{2}{m}\right)b - 8\left(\frac{n - r}{m}\right) < 0$$

and so $b^2 < 4a$. Similarly, if $b > 1 + \sqrt{6(1/m) - 3}$, then $3a < b^2 + 2b + 4$. Since the length of the interval

$$I = \left(\frac{1}{2} + \sqrt{6\left(\frac{n}{m}\right) - 3}, \frac{2}{3} + \sqrt{8\left(\frac{n}{m}\right) - 8}\right)$$

is greater than 4, it follows that I contains two consecutive odd positive integers b_1 and b_2. Thus, there exist odd positive integers a and b that satisfy (5) and the inequalities $b^2 < 4a$ and $3a < b^2 + 2b + 4$. Cauchy's Lemma implies that there exist s, t, u, v satisfying (1) and (2), and so

$$n = \frac{m}{2}(a - b) + b + r = \frac{m}{2}(s^2 - s) + s + \cdots + \frac{m}{2}(v^2 - v) + v + r = p_m(s) + p_m(t) + p_m(u) + p_m(v) + r.$$

This completes the proof.

Note that this result is slightly stronger than Cauchy's theorem. Legendre [6] proved that every sufficiently large integer is the sum of five polygonal numbers of order $m + 2$, one of which is either 0 or 1. This can also be easily proved.
Theorem 2. Let \(m \geq 3 \). If \(m \) is odd, then every sufficiently large integer is the sum of four polygonal numbers of order \(m + 2 \). If \(m \) is even, then every sufficiently large integer is the sum of five polygonal numbers of order \(m + 2 \), one of which is either 0 or 1.

Proof. There is an absolute constant \(c \) such that if \(n > cm^3 \), then the length of the interval \(I \) defined in (6) is greater than \(2m \), and so \(I \) contains at least \(m \) consecutive odd integers.

If \(m \) is odd, these form a complete set of residues modulo \(m \), and so \(n \equiv b \pmod{m} \) for some odd number \(b \in I \). Let \(r = 0 \). Define \(a \) by formula (4).

If \(m \) is even and \(n > cm^3 \), then \(n \equiv b + r \pmod{m} \) for some odd integer \(b \in I \) and \(r \in \{0,1\} \). Define \(a \) by (4).

In both cases, the theorem follows immediately from Cauchy's Lemma.

References

2. L. E. Dickson, All positive integers are sums of values of a quadratic function of \(x \), Bull. Amer. Math. Soc. 33 (1927), 713–720.
7. G. Pall, Large positive integers are sums of four or five values of a quadratic function, Amer. J. Math. 54 (1932), 66–78.

Department of Mathematics, Rutgers University, Newark, New Jersey 07102

Current address: Office of the Provost and Vice President for Academic Affairs, Lehman College (CUNY), Bronx, New York 10468