The Jantzen filtration of a certain class of Verma modules
HTML articles powered by AMS MathViewer
- by Jong Min Ku
- Proc. Amer. Math. Soc. 99 (1987), 35-40
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866425-9
- PDF | Request permission
Abstract:
Let $G = {N_ + } \oplus H \oplus {N_ - }$ be a Kac-Moody Lie algebra. For each $M$ in the category $\mathcal {O}$ of $G$-modules, there is a filtration ${({M_i})_{i \geq 0}}$ by $G$-submodules of $M$ naturally associated with the set $\left \{ {\upsilon \in M\left | {{N_ + }\upsilon } \right . = 0} \right \}$. If $G$ is symmetrizable and $M$ is a Verma module, ${M_i} = {M^i}$ for all $i$ if and only if $\left [ {M:L(\mu )} \right ] = \dim \operatorname {Hom}_G(M(\mu ),M)$ for all $\mu \in {H^ * }$ where ${({M^i})_{i \geq 0}}$ is the Jantzen filtration of $M$. The main tools used are the nondegenerate form on each ${M^i}/{M^{i + 1}}$ together with the $\Gamma$-operator of $G$.References
- Vinay V. Deodhar, Ofer Gabber, and Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR 663417, DOI 10.1016/S0001-8708(82)80014-5
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
- V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97–108. MR 547842, DOI 10.1016/0001-8708(79)90066-5
- Alvany Rocha-Caridi and Nolan R. Wallach, Highest weight modules over graded Lie algebras: resolutions, filtrations and character formulas, Trans. Amer. Math. Soc. 277 (1983), no. 1, 133–162. MR 690045, DOI 10.1090/S0002-9947-1983-0690045-3 N. N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6 (1972), 307-312.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 35-40
- MSC: Primary 17B67; Secondary 17B10, 22E47
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866425-9
- MathSciNet review: 866425