Convolution estimates for some measures on curves
HTML articles powered by AMS MathViewer
- by Daniel M. Oberlin
- Proc. Amer. Math. Soc. 99 (1987), 56-60
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866429-6
- PDF | Request permission
Abstract:
Suppose that $\lambda$ is a smooth measure on a curve in ${R^3}$. It is shown that $\lambda * {L^p}({R^3}) \subset {L^q}({R^3})$ under certain conditions on $\lambda ,p$ and $q$.References
- M. Christ, Convolution estimates for Cantor-Lebesgue measures, preprint.
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Walter Littman, $L^{p}-L^{q}$-estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 479–481. MR 0358443
- E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159–172. MR 92943, DOI 10.1090/S0002-9947-1958-0092943-6
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 56-60
- MSC: Primary 42B15; Secondary 42A85, 43A22
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866429-6
- MathSciNet review: 866429