ABSTRACT. It is proved in this note that the so-called A-property is necessary in order that the finite-dimensional space U be Chebyshev in $C(K)$ with respect to the norm $\|f\| = \int_K \omega |f|$ for every positive continuous weight ω. It is also shown that for each finite-dimensional subspace U there exists a positive continuous weight ω such that U is Chebyshev in $C(K)$ with respect to this weight ω.

NOTATION. Let K be a compact subset of \mathbb{R}^n and denote by $C(K)$ the set of continuous real functions on K. Furthermore, we denote $W_C = \{\omega \in C(K): \omega > 0 \text{ on } K\}$ and $W = \{\omega: \omega \text{ is measurable and } 0 < \inf\{\omega(x): x \in K\} \leq \sup\{\omega(x): x \in K\} < \infty\}$. For any $\omega \in W$ we denote by $C_\omega(K)$ the space $C(K)$ endowed with the norm

\[\|f\|_{L_\omega(K)} = \int_K \omega |f|. \]

Furthermore, we shall say that a finite-dimensional subspace U in $C(K)$ is a Chebyshev subspace of $C_\omega(K)$ if every $f \in C(K)$ has a unique best approximant in U with respect to norm (1). We shall assume that $\text{Int} K = K$.

By a result of Strauss [3] if U satisfies the so-called A-property then U is a Chebyshev subspace of $C_\omega(K)$ for every $\omega \in W$. In [1] we proved the converse of this statement: If U is Chebyshev in $C_\omega(K)$ for every $\omega \in W$ then U is an A-space. Independently, Pinkus [2] gave another version of this result. He showed using a different method that the A-property is necessary even for uniqueness with respect to all continuous weights $\omega \in W_C$. However, a price had to be paid in that U should satisfy

\[\mu(Z(\mu)) = \mu(\text{Int}(Z(\mu))), \quad u \in U. \]

(Here and in what follows $Z(u) = \{x \in K: u(x) = 0\}$, $\mu(S)$ denotes the Lebesgue measure of S.) This left open the question whether the A-property is necessary for uniqueness for every $\omega \in W_C$ without any assumption on U. In this note we give an affirmative answer to this question showing that restriction (2) can be removed.

THEOREM 1. If U is a Chebyshev subspace of $C_\omega(K)$ for every $\omega \in W_C$ then U is an A-space.

In the proof of Theorem 1 we shall follow the approach used in [1] with some more technical details needed for construction of continuous weight.

Received by the editors November 12, 1985.
1980 Mathematics Subject Classification (1985 Revision). Primary 41A52.
This paper was written during the author’s visit to Texas A & M University, College Station, Texas.

©1987 American Mathematical Society
0002-9939/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The above results indicate that A-spaces are the only subspaces of $C(K)$ which guarantee uniqueness of best approximation in $C_\omega(K)$ for every $\omega \in W_C$. On the other hand it will be shown below that each finite-dimensional subspace of $C(K)$ is Chebyshev in $C_\omega(K)$ for some $\omega \in W_C$.

Theorem 2. For any finite-dimensional subspace U in $C(K)$ there exists an $\omega \in W_C$ such that U is a Chebyshev subspace of $C_\omega(K)$.

First of all let us recall the definition of A-spaces. Denote $U^* = \{u^* \in C(K) : \text{there exists } u \in U \text{ such that } |u| = |u^*| \text{ on } K \}$.

Definition. The finite-dimensional subspace U in $C(K)$ is called an A-space if for every $u^* \in U^\star \setminus \{0\}$ there exists a $u \in U \setminus \{0\}$ such that $uu^* \geq 0$ on K and $u = 0$ a.e. on $Z(u^*)$.

We shall use in our considerations the following result of Strauss [4].

Lemma 1. U is a Chebyshev subspace of $C_\omega(K)$ ($\omega \in W$) if and only if for every $u^* \in U^\star \setminus \{0\}$ there exists a $u \in U$ such that

$$\int_{K \setminus Z(u^*)} \omega u \operatorname{sgn} u^* > \int_{Z(u^*)} \omega |u|.$$

In order to prove Theorem 1 we need some further lemmas. As usual $\|g\|_{C(D)}$ denotes supremum norm on $D \subset \mathbb{R}^n$.

Let $D \subset \mathbb{R}^n$ be open and bounded, $M > 0$. Set $W_M(D) = \{\omega \in C(\overline{D}) : \omega > 0 \text{ on } \overline{D}, \omega = M \text{ on } \partial D \text{ and } \int_D \omega \leq 1\}$.

Lemma 2. Let $g \in C(D)$, $\|g\|_{C(D)} < \infty$, $g \geq 0$ on D and $\int_D g < 1$. For any $\varepsilon > 0$ there exists $\omega \in W_M(D)$ such that $\|g - \omega\|_{L_1(D)} < \varepsilon$.

Proof. Without loss of generality we may assume that $g > 0$ on D. Denote $\rho(x) = \text{dist}(x, \partial D)$ and set

$$\Psi_\varepsilon(x) = \begin{cases} 1 - \rho(x)/\varepsilon, & \text{if } \rho(x) < \varepsilon, \\ 0, & \text{if } \rho(x) \geq \varepsilon, \end{cases} \quad \varphi_\varepsilon(x) = \begin{cases} \rho(x)/\varepsilon, & \text{if } \rho(x) < \varepsilon, \\ 1, & \text{if } \rho(x) \geq \varepsilon. \end{cases}$$

Evidently, $\Psi_\varepsilon, \varphi_\varepsilon \in C(\overline{D})$, $\Psi_\varepsilon, \varphi_\varepsilon \geq 0$ on \overline{D}. Consider the function $g_\varepsilon(x) = M\Psi_\varepsilon(x) + g(\varphi_\varepsilon(x))$. Then $g_\varepsilon \in C(D)$, $g_\varepsilon > 0$ on \overline{D} and $g_\varepsilon = M$ on ∂D. Furthermore, since $g_\varepsilon = g$ if $\rho(x) \geq \varepsilon$ we have

$$\|g - g_\varepsilon\|_{L_1(D)} = \int_{\{x \in D : \rho(x) < \varepsilon\}} |g - g_\varepsilon| \leq (M + 2\|g\|_{C(D)}) \cdot \mu\{x \in D : \rho(x) < \varepsilon\} \to 0 \quad (\varepsilon \to 0).$$

Thus, in particular, $\int_D g_\varepsilon \to \int_D g < 1$ ($\varepsilon \to 0$). This implies that, for ε sufficiently small, $\int_D g_\varepsilon \leq 1$ and, consequently, $g_\varepsilon \in W_M(D)$. This completes the proof of the lemma.

Lemma 3. Let $g \in C(D)$, $\|g\|_{C(D)} < \infty$ and assume that $\int_D g \omega \geq 0$ for every $\omega \in W_M(D)$. Then $g \geq 0$ on D.

Proof. Let $\tilde{g}(x)$ be equal to 0 if $g(x) \geq 0$ and $\tilde{g}(x) = -g(x)$ if $g(x) < 0$. Obviously, $\tilde{g} \in C(D)$, $\|\tilde{g}\|_{C(D)} < \infty$ and $\tilde{g} \geq 0$ on D. We may assume that $\int_D |g| < 1$ which implies that $\int_D \tilde{g} < 1$. Thus we can apply Lemma 1 to \tilde{g}; that is
we can find an \(\tilde{\omega} \in W_M(D) \) such that \(\|\tilde{g} - \tilde{\omega}\|_{L_1(D)} < \varepsilon \). Using that \(\int_D \tilde{g} \geq 0 \) and setting \(D_1 = \{x \in D : g(x) < 0\} \), we obtain
\[
\int_{D_1} g^2 \leq \int_{D_1} |g\tilde{\omega} + g^2| - \int_{D_1} g\tilde{\omega} = \int_{D_1} |g\tilde{\omega} + g^2| - \int_D g\tilde{\omega} + \int_{D\setminus D_1} g\tilde{\omega}
\]
\[
\leq \int_{D_1} |g\tilde{\omega} + g^2| + \int_{D\setminus D_1} |g|\tilde{\omega} \leq \|g\|_{C(D)} \left\{ \int_{D_1} |\tilde{\omega} + g| + \int_{D\setminus D_1} \tilde{\omega} \right\}
\]
\[
= \|g\|_{C(D)} \|\tilde{\omega} - \tilde{g}\|_{L_1(D)} < \varepsilon \|g\|_{C(D)}.
\]
Since \(\varepsilon > 0 \) is arbitrary this yields that \(\int_{D_1} g^2 = 0 \), i.e. \(\mu(D_1) = 0 \). This and continuity of \(g \) on \(D \) imply that \(g \geq 0 \) on \(D \).

Proof of Theorem 1. Consider an arbitrary \(u^* \in U^* \setminus \{0\} \). By Lemma 1 for every \(\omega \in W_C \) there exists a \(u \in U \) such that
\[
\int_{K \setminus Z(u^*)} \omega u \operatorname{sgn} u^* > \int_{Z(u^*)} \omega |u|.
\]
Set \(\tilde{U} = \{u \in U : u = 0 \text{ a.e. on } Z(u^*)\} \), and let \(U = \tilde{U} \oplus U_1 \). This means that \(U_1 \) is a linear subspace of \(U \) and elements of \(U_1 \) cannot vanish a.e. on \(Z(u^*) \). Hence there exists a constant \(M > 0 \) such that
\[
\|u_1\|_{C(K)} \leq M \int_{Z(u^*)} |u_1| \tag{4}
\]
holds for every \(u_1 \in U_1 \). Set \(D = K \setminus Z(u^*) \) and consider the set \(W_M(D) \). Let \(\varphi_1, \ldots, \varphi_r \) be a basis in \(\tilde{U} \). We introduce the set
\[
A_r = \left\{ \left(\int_D \omega \varphi_i \operatorname{sgn} u^* \right)_{i=1}^r : \omega \in W_M(D) \right\}.
\]
Evidently, \(A_r \) is a convex set in \(R^r \). Furthermore, Lemma 2 implies that \(0 \in \overline{A_r} \). We claim that \(0 \notin A_r \). Assume that in contradiction \(0 \in A_r \). Then for some \(\tilde{\omega} \in W_M(D) \)
\[
\int_D \tilde{\omega} u \operatorname{sgn} u^* = 0, \quad u \in \tilde{U}.
\]
Extend \(\tilde{\omega} \) to \(Z(u^*) \) setting \(\tilde{\omega} = M \) on \(Z(u^*) \). Obviously, \(\tilde{\omega} \in W_C \). Consider an arbitrary \(u = u_1 + \tilde{u} \in U \), where \(u_1 \in U_1, \tilde{u} \in \tilde{U} \). Then by (5) and (4)
\[
\left| \int_D \tilde{\omega} u \operatorname{sgn} u^* \right| = \left| \int_D \tilde{\omega} u_1 \operatorname{sgn} u^* \right|
\]
\[
\leq \|u_1\|_{C(K)} \int_D \tilde{\omega} \leq \|u_1\|_{C(K)} \leq M \int_{Z(u^*)} |u_1| = \int_{Z(u^*)} \tilde{\omega} |u|.
\]
But this contradicts (3). Hence \(0 \notin A_r \), i.e. \(0 \in \text{Bd} A_r \). Then there exists a hyperplane supporting \(A_r \) at \(0 \); that is, for some \(u \in \tilde{U} \setminus \{0\} \) we have that
\[
\int_D \omega u \operatorname{sgn} u^* \geq 0
\]
for every \(\omega \in W_M(D) \). This and Lemma 3 imply that \(uu^* \geq 0 \) on \(D \), and therefore \(uu^* \geq 0 \) on \(K \), as well. Moreover, \(u = 0 \text{ a.e. at } Z(u^*) \), and thus the \(A \)-property of \(U \) is verified.
PROOF OF THEOREM 2. Let \(U = \text{span}\{u_1, \ldots, u_n\} \). Since \(K = \text{Int} K \) it follows that \(u_1, \ldots, u_n \) are linearly independent on \(\text{Int} K \). Therefore, there exist points \(x_1, \ldots, x_n \in \text{Int} K \) such that
\[
\det \begin{pmatrix}
 u_1(x_1), & \ldots, & u_1(x_n) \\
 \vdots & & \vdots \\
 u_n(x_1), & \ldots, & u_n(x_n)
\end{pmatrix} \neq 0.
\]
(6)

Denote by \(B_r(x) \) the closed ball with center at \(x \) and radius \(r \). Set
\[
D_1^{(m)} = \bigcup_{i=1}^{n} B_{1/m}(x_i); \quad D_2^{(m)} = \bigcup_{i=1}^{n} B_{1/m+1/m^2}(x_i).
\]
For a suitable \(m_0 \) we have that \(D_1^{(m)} \subseteq D_2^{(m)} \subseteq \text{Int} K \) if \(m \geq m_0 \). Consider a weight \(\omega_m \) equal to \(1 \) and \(1/m^{s+1} \) on \(D_1^{(m)} \) and \(K \setminus D_2^{(m)} \), respectively. We can easily extend \(\omega_m \) to \(D_2^{(m)} \setminus D_1^{(m)} \) in such a way that \(\omega_m \in W_C \) and \(\omega_m \leq 1 \) on \(K \). Assume that the statement of the theorem is false. Then, in particular, \(U \) is not Chebyshev in \(C_{\omega_m}(K) \) for every \(m \geq m_0 \). It follows from Lemma 1 that there exists \(u_m^* \in U^* \setminus \{0\} \), \(\|u_m^*\|_{C(K)} = 1 \) such that, for every \(u \in U \),
\[
\left| \int_{K \setminus Z(u_m^*)} \omega_m u \text{sgn } u_m^* \right| \leq \int_{Z(u_m^*)} \omega_m|u|, \quad (m \geq m_0).
\]
(7)

By definition of \(U^* \) there exists \(u_m \in U \) satisfying \(|u_m^*| = |u_m| \) on \(K \). In particular, we obtain that \(\|u_m\|_{C(K)} = 1 \). Therefore, without loss of generality we may assume that \(u_m \rightarrow u_0 \in U \) in \(C(K) \)-norm, \(\|u_0\|_{C(K)} = 1 \). By (6), \(u_0(x_r) \neq 0 \) for at least one \(1 \leq r \leq n \). Moreover, (6) also implies that there exists \(\tilde{u} \in U \setminus \{0\} \) such that \(\tilde{u}(x_r) = 1 \) and \(\tilde{u}(x_i) = 0 \) for \(1 \leq i \leq n, i \neq r \). Applying (7) to \(\tilde{u} \) we have
\[
\left| \int_{K \setminus Z(u_m^*)} \omega_m \tilde{u} \text{sgn } u_m^* \right| \leq \int_{Z(u_m^*)} \omega_m|\tilde{u}|, \quad m \geq m_0.
\]
(8)

Since \(u_0(x_r) \neq 0 \) and \(|u_m| = |u_m| \rightarrow |u_0| \) \((m \rightarrow \infty) \) uniformly on \(K \) it follows that \(B_{1/m}(x_r) \subseteq K \setminus Z(u_m^*) \) for \(m \geq m_1 \) with sufficiently large \(m_1 \). Therefore, we obtain by (8)
\[
\left| \int_{B_{1/m}(x_r)} \tilde{u} \right| = \int_{B_{1/m}(x_r)} \omega_m \tilde{u} \text{sgn } u_m^* \leq \int_{K \setminus B_{1/m}(x_r)} \omega_m|\tilde{u}|
\]
(9)
\[
= \sum_{i=1}^{n} \int_{B_{1/m}(x_i)} \omega_m|\tilde{u}| + \int_{D_2^{(m)} \setminus D_1^{(m)}} \omega_m|\tilde{u}| + \int_{K \setminus D_2^{(m)}} \omega_m|\tilde{u}|.
\]

Furthermore, we have
\[
\int_{K \setminus D_2^{(m)}} \omega_m|\tilde{u}| = \frac{1}{m^{s+1}} \int_{K \setminus D_2^{(m)}} |\tilde{u}| \leq \frac{\mu(K)\|\tilde{u}\|_{C(K)}}{m^{s+1}},
\]
(10)
\[
\int_{D_2^{(m)} \setminus D_1^{(m)}} \omega_m|\tilde{u}| \leq \int_{D_2^{(m)} \setminus D_1^{(m)}} |\tilde{u}| \leq \|\tilde{u}\|_{C(K)} \mu(D_2^{(m)} \setminus D_1^{(m)}) \leq \frac{a_s\|\tilde{u}\|_{C(K)}}{m^{s+1}}
\]
(11)
with a constant \(a_s > 0 \) depending only on \(s \). Finally, using that \(\tilde{u}(x_i) = 0 \) for \(1 \leq i \leq n, i \neq r \), we obtain

\[
\sum_{i=1}^{n} \int_{B_{1/m}(x_i)} \omega_m |\tilde{u}| = \sum_{i=1}^{n} \int_{B_{1/m}(x_i)} |\tilde{u}| \leq \frac{C_s(n-1)\omega(\tilde{u}, 1/m)}{m^s},
\]

where \(C_s > 0 \) depends only on \(s \) and \(\omega(\tilde{u}, h) \) is the uniform modulus of continuity of \(\tilde{u} \). Applying inequalities (10)–(12) in (9) leads to

\[
\left| \int_{B_{1/m}(x_r)} \tilde{u} \right| \leq o(m^{-s}), \quad m \geq m_1,
\]

which in turn implies that \(\tilde{u}(x_r) = 0 \), a contradiction. The theorem is proved.

REFERENCES

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, REALTANODA U. 13-15, H-1053 HUNGARY

Current address: Department of Mathematics, University of South Florida, Tampa, Florida 33620

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use