A remark on singular Calderón-Zygmund theory
HTML articles powered by AMS MathViewer
- by Michael Christ and Elias M. Stein
- Proc. Amer. Math. Soc. 99 (1987), 71-75
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866432-6
- PDF | Request permission
Abstract:
It is shown that in ${{\mathbf {R}}^n}$ the operator \[ Hf\left ( x \right ) = pv\int _{ - \infty }^{ + \infty } {f\left ( {{x_1} - t, \ldots {x_n} - {t^n}} \right ){t^{ - 1}}dt} \] maps $L\left ( {\log L} \right )$ to weak ${L^1}$ locally. A slight variant of the Calderón-Zygmund procedure provides a new approach to the previously known ${L^p}$ boundedness of $H,1 < p < \infty$. Relatively sharp bounds are obtained as $p \to {1^ + }$, and extrapolation produces the result for $L\left ( {\log L} \right )$.References
- Hasse Carlsson, Michael Christ, Antonio Córdoba, Javier Duoandikoetxea, José L. Rubio de Francia, James Vance, Stephen Wainger, and David Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\textbf {R}^2$, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 263–267. MR 828823, DOI 10.1090/S0273-0979-1986-15433-9
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330 —, Differentiation along variable curves and related singular integral operators, announcement. —, Weak type $(1,1)$ bounds for rough operators, preprint.
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946 A. Greenleaf, Singular integral operators with conical singularities, preprint.
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Shigeki Yano, Notes on Fourier analysis. XXIX. An extrapolation theorem, J. Math. Soc. Japan 3 (1951), 296–305. MR 48619, DOI 10.2969/jmsj/00320296
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 71-75
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866432-6
- MathSciNet review: 866432