THE FIXED POINTS OF AN ANALYTIC SELF-MAPPING

S. D. Fisher AND John Franks

Abstract. Let \(R \) be a hyperbolic Riemann surface embedded in a compact Riemann surface of genus \(g \) and let \(f \) be an analytic function mapping \(R \) into \(R \), \(f \) not the identity function. Then \(f \) has as most \(2g + 2 \) distinct fixed points in \(R \); equality may hold. If \(f \) has 2 or more distinct fixed points, then \(f \) is a periodic conformal automorphism of \(R \) onto itself. This paper contains a proof of this theorem and several related results.

This paper contains a proof of the following theorem.

Theorem. Let \(R \) be a hyperbolic Riemann surface embedded in a compact Riemann surface of genus \(g \) and let \(f \) be an analytic function mapping \(R \) into \(R \), \(f \) not the identity function. Then \(f \) has at most \(2g + 2 \) distinct fixed points in \(R \); equality may hold. If \(f \) has 2 or more distinct fixed points, then \(f \) is a periodic conformal automorphism of \(R \) onto itself.

Corollary. Let \(\Omega \) be a domain in the complex plane with at least two (finite) boundary points and let \(f \) be an analytic function mapping \(\Omega \) into itself, \(f \) not the identity function. Then \(f \) has at most two distinct fixed points.

Some comments on this theorem and its proof will be found at the end of the paper.

We begin with a theorem that is independent of genus.

Theorem 1. Let \(R \) be a hyperbolic Riemann surface which is not conformally equivalent to a disc and let \(f \) be a nonconstant analytic function mapping \(R \) into \(R \). If \(f \) has two or more distinct fixed points in \(R \), then \(f \) is a periodic conformal automorphism of \(R \) onto \(R \).

Proof. Let \(z_0 \) be a fixed point of \(f \) in \(R \); let \(T \) be the uniformizer of \(R \) with \(T(0) = z_0 \). There is an analytic function \(g \) mapping \(\Delta \) into \(\Delta \) with \(T \circ g = f \circ T \). Hence, \(T(g(0)) = f(T(0)) = F(z_0) = z_0 \) so that there is an element \(\gamma \) of the group of deck transformations with \(\gamma(g(0)) = 0 \). Let \(g_1 = \gamma \circ g \). Then \(g_1(0) = 0 \) and \(T \circ g_1 = T \circ \gamma \circ g = T \circ g = f \circ T \). Hence, we may initially assume that \(g(0) = 0 \).

We define the iterates of \(f \) by

\[f_1 = f \quad \text{and} \quad f_{n+1} = f \circ f_n, \quad n = 1, 2, \ldots. \]

Similarly, we define \(g_1, g_2, \ldots \), the iterates of \(g \). It follows that

\[T \circ g_n = f_n \circ T, \quad n = 1, 2, \ldots. \]

The functions \(\{g_n\} \) form a normal family.

Received by the editors May 6, 1985 and, in revised form, December 11, 1985.

Research of both authors supported in part by the National Science Foundation.
Let $S = T^{-1}(z_0)$; because T is a covering map S is a discrete subset of Δ. Note that S is not a singleton since R is not conformally a disc. If $w \in S$, then $T(g(w)) = f(T(w)) = f(z_0) = z_0$ so that g maps S into itself.

If $|g'(0)| < 1$, then the sequence $\{g_n\}$ converges uniformly on compact subsets of Δ to the function which is identically zero and hence $f_n(p) \to z_0$ as $n \to \infty$ for each $p \in R$. In this case f has just one fixed point. This shows that it must be the case that $|g'(0)| = 1$. Consequently, $g(z) = \lambda_0 z$, $\lambda_0 = \exp(2\pi i \theta_0)$ for a unique $\theta_0 \in [0,1)$. We shall show that θ_0 is rational. Suppose to the contrary that θ_0 is irrational. Let w be any point in S, $w \neq 0$. Since g is a rotation about 0 of $2\pi \theta_0$ radians it follows that $S \cap \{|z| < r\}$ is not discrete for some $r < 1$. This contradicts the fact that T is a covering map. Hence, $\theta_0 = M/N$ where M and N are positive integers with no common factors. Consequently, g_N is the identity and so f_N is also the identity. This then implies that f is a one-to-one mapping of Ω onto itself.

Remark. It is elementary to see that an analytic function mapping Δ into Δ has at most 1 (distinct) fixed point unless it is the identity. Thus, the exclusion of the disc in Theorem 1 is not important.

Proof of the Theorem. There is no loss in assuming initially that f has at least two fixed points. Applying Theorem 1, we see that f is a periodic conformal automorphism of R onto itself, say $f_N = \text{identity}$.

Let u be a continuous function on the closure of R which is zero on the boundary of R and positive and C^∞ on R. Set

$$H(z) = \begin{cases} \sum_{k=1}^N u(f_k(z)), & z \in R, \\ 0, & z \in \partial R. \end{cases}$$

H is a continuous function on $R \cup \partial R$ which is positive and C^∞ on R. Let E be the critical set of H on R and let $\{\varepsilon_n\}$ be a sequence of positive numbers decreasing to zero with no ε_n contained in $H(E)$. Such numbers exist by Sard’s theorem. Define R_n to be that component of the set $H^{-1}(\varepsilon_n, \infty)$ which contains the point z_0. Then $R_1 \subset R_2 \subset \cdots$, the union of all the R_n is R, and f maps R_n onto itself for each n since $H \circ f = H$. Further, by the inverse function theorem, ∂R_n is the union of a finite number of disjoint, smooth, simple closed curves. Finally, the genus of each R_n is no more than g since the genus of a surface is the maximal number of simple closed curves that may be deleted from the surface without disconnecting it. We shall show that f has no more than $2 + 2g$ fixed points in any R_n; this will complete the proof of the theorem.

Fix n and let S denote R_n. Let S' denote the surface obtained by identifying the orbits $\{f_k(z): k = 1, 2, \ldots, N\}$ to a point and let F be the quotient map from S onto S'. We may now apply the Riemann-Hurwitz relation [1, Theorem I.2.7] to F, S, and S':

$$2g = 2d(g' - 1) + 2 + B$$

where g is the genus of S, g' the genus of S', d the degree of F, and B the total branching number of F. In this case, we know that $d = N$ and $B = (N - 1)\alpha$ where α is the number of fixed points of f. This yields

$$(N - 1)\alpha = 2g - 2N(g' - 1) - 2 \leq 2g + 2N - 2.$$

Consequently,

$$\alpha \leq 2 + 2g/(N - 1) \leq 2 + 2g.$$

This completes the proof of the theorem.
EXAMPLES. 1. The function \(g(z) = z e^z \) maps the surface \(R = \mathbb{C}\setminus\{0\} \) into itself and has infinitely many fixed points.

2. For \(N \geq 2 \), the polynomial \(p(z) = z^N + z - 1 \) maps the sphere onto itself and the plane onto itself and has \(N \) distinct fixed points.

3. Let \(R \) be the compact Riemann surface of genus \(g \) obtained by taking the connected sum of \(g \) tori. The mapping \(f \) obtained by rotating \(R \) by 180° is the hyperelliptic involution of \(R \) and it has \(2g + 2 \) fixed points. Indeed, the proof of the theorem shows that the number of fixed points on a compact surface can equal \(2g + 2 \) only when \(N = 2 \); in this case, \(R \) must be hyperelliptic and \(f \) the unique involution of \(R \); see [1, Proposition III.7.9].

REMARKS. 1. The problem of determining the number of fixed points of an analytic function mapping a planar domain into itself was originally brought to our attention by L. A. Rubel.

2. The theorem has a more direct, but deeper proof. Once Theorem 1 is established, we could appeal to a result of B. Maskit [3] which asserts that there is a closed Riemann surface \(R^* \) of genus \(g \) and a conformal embedding of \(R \) into \(R^* \) so that, under this embedding, every conformal self-map of \(R \) is the restriction of a conformal self-map of \(R^* \). An application of the Riemann-Hurwitz theorem then completes the proof, as it did ours.

3. A version of our Theorem 1 is also to be found in [2] as Theorem 4 although the proof is considerably different.

4. The final paragraph of the proof of the Theorem can be modified to prove the following more general result.

PROPOSITION. Let \(f \) be a diffeomorphism of a compact connected surface \(S \), which may have boundary and which has genus \(g \). Suppose that \(f_N \), the \(N \)th iterate of \(f \), is the identity, and \(f_k \) is not the identity if \(0 < k < N \). If the number \(\alpha \) of fixed points of \(f \) is finite, then \(\alpha \) satisfies \(\alpha \leq 2 + 2g/(N - 1) \).

PROOF. By averaging a metric we may assume \(f \) is an isometry. Let \(S' \) denote the surface obtained by identifying orbits of \(f \) to a point and let \(F : S \rightarrow S' \) be the quotient map. Since \(f \) is an isometry, in a neighborhood of a fixed point it is a rotation through an angle of \(2\pi M/N \). (If it was a reflection there would be infinitely many fixed points.) The integer \(M \) must be prime to \(N \) since otherwise for some \(k, 0 < k < N \), \(f_k \) is the identity on a neighborhood of the fixed point and hence on all of \(S \). The remainder of the proof now is the same as that of the Theorem. We note that the Riemann-Hurwitz relation holds in this more general context, and the proof in [1] is adequate to show this.

REFERENCES

Department of Mathematics, Northwestern University, Evanston, Illinois 60201