On periodic solutions of nonlinear differential equations with singularities
HTML articles powered by AMS MathViewer
- by A. C. Lazer and S. Solimini
- Proc. Amer. Math. Soc. 99 (1987), 109-114
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866438-7
- PDF | Request permission
Abstract:
Necessary and sufficient conditions for existence of periodic solutions of differential equations containing singularities are given. Our theorems apply to $u'' + 1/{u^\alpha } = h\left ( t \right ) \equiv h\left ( {t + T} \right )$ for all $\alpha > 0$ and to $u'' - 1/{u^\alpha } = h\left ( t \right )$ if $\alpha \geq 1$, and for this case $\alpha \geq 1$ is an essential condition.References
- Svatopluk Fučík, Solvability of nonlinear equations and boundary value problems, Mathematics and its Applications, vol. 4, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980. With a foreword by Jean Mawhin. MR 620638
- Robert E. Gaines and Jean L. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR 0637067
- A. C. Lazer, On Schauder’s fixed point theorem and forced second-order nonlinear oscillations, J. Math. Anal. Appl. 21 (1968), 421–425. MR 221026, DOI 10.1016/0022-247X(68)90225-4
- Jean Mawhin, An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 20–29. MR 313587, DOI 10.1016/0022-247X(72)90025-X
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 109-114
- MSC: Primary 34C25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866438-7
- MathSciNet review: 866438