Harmonic maps and a pinching theorem for positively curved hypersurfaces
HTML articles powered by AMS MathViewer
- by H. S. Hu, Y. L. Pan and Y. B. Shen
- Proc. Amer. Math. Soc. 99 (1987), 182-186
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866450-8
- PDF | Request permission
Abstract:
In this paper, we establish a theorem of Liouville type for stable harmonic maps in sufficiently pinched, positively curved hypersurfaces of a space form with nonnegative constant curvature. Similar results for the Euclidean sphere ${S^n}$ have been proved by Y. L. Xin and P. F. Leung, respectively.References
- Shiing Shen Chern and Samuel I. Goldberg, On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133–147. MR 367860, DOI 10.2307/2373664
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, DOI 10.1112/blms/10.1.1
- Pui Fai Leung, On the stability of harmonic maps, Harmonic maps (New Orleans, La., 1980) Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, pp. 122–129. MR 673586
- Y. L. Pan and Y. B. Shen, Stability of harmonic maps and minimal immersions, Proc. Amer. Math. Soc. 93 (1985), no. 1, 111–117. MR 766539, DOI 10.1090/S0002-9939-1985-0766539-6
- Y. L. Xin, Topology of certain submanifolds in the Euclidean sphere, Proc. Amer. Math. Soc. 82 (1981), no. 4, 643–648. MR 614895, DOI 10.1090/S0002-9939-1981-0614895-8
- Y. L. Xin, Some results on stable harmonic maps, Duke Math. J. 47 (1980), no. 3, 609–613. MR 587168
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 182-186
- MSC: Primary 58E20; Secondary 53C20, 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866450-8
- MathSciNet review: 866450