Finite generation of certain subrings
HTML articles powered by AMS MathViewer
- by John Fogarty
- Proc. Amer. Math. Soc. 99 (1987), 201-204
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866454-5
- PDF | Request permission
Abstract:
A more geometric approach can be used to prove finite generation of certain subrings, notably invariants under reductive group actions.References
- Paul M. Eakin Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282. MR 225767, DOI 10.1007/BF01350720
- John Fogarty, Kähler differentials and Hilbert’s fourteenth problem for finite groups, Amer. J. Math. 102 (1980), no. 6, 1159–1175. MR 595009, DOI 10.2307/2374183
- John Fogarty, Geometric quotients are algebraic schemes, Adv. in Math. 48 (1983), no. 2, 166–171. MR 700982, DOI 10.1016/0001-8708(83)90086-5 A. Grothendieck, and J. Dieudonné, EGA, Publ. Math. Inst. Hautes Études Sci., no. 24.
- David Mumford, Hilbert’s fourteenth problem–the finite generation of subrings such as rings of invariants, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 431–444. MR 0435076
- David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371, DOI 10.1007/978-3-642-96676-7
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 201-204
- MSC: Primary 13E15; Secondary 14A15
- DOI: https://doi.org/10.1090/S0002-9939-1987-0866454-5
- MathSciNet review: 866454