Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Covering étendues and Freyd’s theorem

Author: Kimmo I. Rosenthal
Journal: Proc. Amer. Math. Soc. 99 (1987), 221-222
MSC: Primary 18B25
MathSciNet review: 870775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: From Freyd’s covering theorem for Grothendieck topoi, it immediately follows that every Grothendieck topos $\varepsilon$ admits a hyperconnected geometric morphism $\mathcal {F} \to \varepsilon$, where $\mathcal {F}$ is an étendue of (discrete) $G$-sheaves. As a corollary, we obtain that $\varepsilon$ admits an open surjection from a localic topos.

References [Enhancements On Off] (What's this?)

    P. Freyd, All topoi are localic, or Why permutation models prevail (unpublished typescript, Univ. of Pennsylvania, 1979).
  • Peter T. Johnstone, How general is a generalized space?, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 77–111. MR 787824
  • André Joyal and Myles Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71. MR 756176, DOI
  • Kimmo I. Rosenthal, Quotient systems in Grothendieck topoi, Cahiers Topologie Géom. Différentielle 23 (1982), no. 4, 425–438. MR 693508

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18B25

Retrieve articles in all journals with MSC: 18B25

Additional Information

Keywords: Grothendieck topos, étendue, localic topos
Article copyright: © Copyright 1987 American Mathematical Society