Approximate identities and paracompactness
HTML articles powered by AMS MathViewer
- by R. A. Fontenot and R. F. Wheeler
- Proc. Amer. Math. Soc. 99 (1987), 232-236
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870777-3
- PDF | Request permission
Abstract:
Let $X$ denote a locally compact Hausdorff space and ${C_b}(X)$ the algebra of continuous complex-valued functions on $X$. The main result of this paper is that $X$ is paracompact if and only if ${C_0}(X)$, the subalgebra of ${C_b}(X)$ consisting of functions which vanish at infinity, has an approximate identity which is a relatively compact subset of ${C_b}(X)$ for the weak topology of the pairing of ${C_b}(X)$ with its strict topology dual.References
- R. Creighton Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95–104. MR 105611
- H. S. Collins, Strict, weighted, and mixed topologies and applications, Advances in Math. 19 (1976), no. 2, 207–237. MR 394149, DOI 10.1016/0001-8708(76)90062-1
- H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann. 176 (1968), 157–168. MR 222644, DOI 10.1007/BF02056983
- H. S. Collins and R. A. Fontenot, Approximate identities and the strict topology, Pacific J. Math. 43 (1972), 63–79. MR 313824
- John B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474–486. MR 206685, DOI 10.1090/S0002-9947-1967-0206685-2
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076
- J. D. Pryce, A device of R. J. Whitley’s applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. (3) 23 (1971), 532–546. MR 296670, DOI 10.1112/plms/s3-23.3.532 I. Z. Ruzsa, personal communication, 1974.
- F. Dennis Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311–336. MR 295065, DOI 10.1090/S0002-9947-1972-0295065-1
- Donald Curtis Taylor, A general Phillips theorem for $C^{^{\ast } }$-algebras and some applications, Pacific J. Math. 40 (1972), 477–488. MR 308799
- Robert F. Wheeler, Well-behaved and totally bounded approximate identities for $C_{0}(X)$, Pacific J. Math. 65 (1976), no. 1, 261–269. MR 458150
- Robert F. Wheeler, A survey of Baire measures and strict topologies, Exposition. Math. 1 (1983), no. 2, 97–190. MR 710569
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 232-236
- MSC: Primary 46J10; Secondary 46E25, 54D18
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870777-3
- MathSciNet review: 870777