The Oseledec and Sacker-Sell spectra for almost periodic linear systems: an example
Author:
Russell A. Johnson
Journal:
Proc. Amer. Math. Soc. 99 (1987), 261-267
MSC:
Primary 34C35; Secondary 54H20, 58F19, 58F27
DOI:
https://doi.org/10.1090/S0002-9939-1987-0870782-7
MathSciNet review:
870782
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give an example illustrating the relation between the Oseledec spectrum (roughly speaking, the set of Lyapunov exponents) and the Sacker-Sell (or continuous) spectrum for Bohr almost periodic linear systems.
-
A. Coppel, Dichotomies and stabilitity theory, Lecture Notes in Math., vol. 629, Springer-Verlag, Berlin and New York, 1978.
- Ju. L. Dalec′kiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith; Translations of Mathematical Monographs, Vol. 43. MR 0352639
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Robert Ellis and Russell A. Johnson, Topological dynamics and linear differential systems, J. Differential Equations 44 (1982), no. 1, 21–39. MR 651685, DOI https://doi.org/10.1016/0022-0396%2882%2990023-7
- Harry Furstenberg, Harvey Keynes, and Leonard Shapiro, Prime flows in topological dynamics, Israel J. Math. 14 (1973), 26–38. MR 321055, DOI https://doi.org/10.1007/BF02761532
- Russell A. Johnson, The recurrent Hill’s equation, J. Differential Equations 46 (1982), no. 2, 165–193. MR 675906, DOI https://doi.org/10.1016/0022-0396%2882%2990114-0 R. Johnson, K. Palmer and G. Sell, Ergodic theory of linear dynamical systems, SIAM J. Appl. Math. (to appear). V. Millionshchikov, Metric theory of linear systems of differential equations, Math. USSR-Sb. 6 (1968), 149-158. ---, Proof of the existence of non-irreducible systems of linear differential equations with almost periodic coefficients, J. Differential Equations 4 (1968), 203-205.
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280 L. Pontryagin, Topologische Gruppen, Deutsche Ubersetzung, Teubner Verlag, Leipzig, 1957.
- Robert J. Sacker and George R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations 15 (1974), 429–458. MR 341458, DOI https://doi.org/10.1016/0022-0396%2874%2990067-9
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI https://doi.org/10.1016/0022-0396%2878%2990057-8
- W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719–751. MR 187014, DOI https://doi.org/10.2307/2373071
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C35, 54H20, 58F19, 58F27
Retrieve articles in all journals with MSC: 34C35, 54H20, 58F19, 58F27
Additional Information
Keywords:
Almost periodic,
minimal set,
Lyapunov number
Article copyright:
© Copyright 1987
American Mathematical Society