Continuity of derivations on some semiprime Banach algebra
HTML articles powered by AMS MathViewer
- by Ramesh V. Garimella
- Proc. Amer. Math. Soc. 99 (1987), 289-292
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870787-6
- PDF | Request permission
Abstract:
If every prime ideal is closed in a commutative semiprime Banach algebra with unit, then every derivation on it is continuous. Also if derivations are continuous on integral domains, then they are continuous on semiprime Banach algebras.References
- W. G. Bade and P. C. Curtis Jr., Prime ideals and automatic continuity problems for Banach algebras, J. Functional Analysis 29 (1978), no. 1, 88–103. MR 499936, DOI 10.1016/0022-1236(78)90048-4
- Philip C. Curtis Jr., Derivations in commutative Banach algebras, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), Lecture Notes in Math., vol. 975, Springer, Berlin-New York, 1983, pp. 328–333. MR 697597
- Julian Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), no. 3, 493–500. MR 461136, DOI 10.1112/jlms/s2-16.3.493
- J. Esterle, Elements for a classification of commutative radical Banach algebras, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), Lecture Notes in Math., vol. 975, Springer, Berlin-New York, 1983, pp. 4–65. MR 697578
- Sandy Grabiner, The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. MR 236700, DOI 10.1090/S0002-9939-1969-0236700-9
- Sandy Grabiner, A formal power series operational calculus for quasi-nilpotent operators. II, J. Math. Anal. Appl. 43 (1973), 170–192. MR 358410, DOI 10.1016/0022-247X(73)90267-9
- B. E. Johnson, Continuity of derivations on commutative algebras, Amer. J. Math. 91 (1969), 1–10. MR 246127, DOI 10.2307/2373262
- A. Khosravi, Derivations on commutative Banach algebras, Proc. Amer. Math. Soc. 84 (1982), no. 1, 60–64. MR 633278, DOI 10.1090/S0002-9939-1982-0633278-9
- I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264. MR 70061, DOI 10.1007/BF01362370
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 289-292
- MSC: Primary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870787-6
- MathSciNet review: 870787