Concerning polynomials on the unit interval
HTML articles powered by AMS MathViewer
- by Q. M. Tariq
- Proc. Amer. Math. Soc. 99 (1987), 293-296
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870788-8
- PDF | Request permission
Abstract:
Let ${\mathcal {P}_n}$ be the normed linear space of all polynomials $p$ of degree $\leq n$ such that $p(1) = 0$ and $||p|| = (\int _{ - 1}^1 {|p(x){|^2}dx{)^{1/2}}}$. We determine sharp upper bounds for $|{a_n}|/||p||$ and $|{a_{n - 1}}|/||p||\;{\text {as}}\;p{\text {(x)}}\;{\text {: = }}\;\sum \nolimits _{\nu = 0}^n {{a_\nu }{x^\nu }}$ varies in ${\mathcal {P}_n}$.References
- Gilbert Labelle, Concerning polynomials on the unit interval, Proc. Amer. Math. Soc. 20 (1969), 321–326. MR 236568, DOI 10.1090/S0002-9939-1969-0236568-0
- I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), no. 3-4, 271–287 (German). MR 1544364, DOI 10.1007/BF01203015
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 293-296
- MSC: Primary 26C05; Secondary 41A10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870788-8
- MathSciNet review: 870788