## Radon’s problem for some surfaces in $\textbf {R}^ n$

HTML articles powered by AMS MathViewer

- by A. M. Cormack PDF
- Proc. Amer. Math. Soc.
**99**(1987), 305-312 Request permission

## Abstract:

Radon’s problem for a family of curves in ${R^2}$ has been generalized to a family of $(n - 1)$-dimensional surfaces in ${R^n}$. The problem is posed as a set of integral equations. Solutions to these equations are given for paraboloids and cardioids, and for these cases the null spaces and consistency conditions have been found.## References

- A. M. Cormack,
*The Radon transform on a family of curves in the plane*, Proc. Amer. Math. Soc.**83**(1981), no. 2, 325–330. MR**624923**, DOI 10.1090/S0002-9939-1981-0624923-1 - A. M. Cormack,
*The Radon transform on a family of curves in the plane. II*, Proc. Amer. Math. Soc.**86**(1982), no. 2, 293–298. MR**667292**, DOI 10.1090/S0002-9939-1982-0667292-4
—, SIAM-AMS Proceedings, vol. 14, Amer. Math. Soc., Providence, R.I., 1984, pp. 33-39.
- A. M. Cormack and E. T. Quinto,
*A Radon transform on spheres through the origin in $\textbf {R}^{n}$ and applications to the Darboux equation*, Trans. Amer. Math. Soc.**260**(1980), no. 2, 575–581. MR**574800**, DOI 10.1090/S0002-9947-1980-0574800-3 - Stanley R. Deans,
*The Radon transform and some of its applications*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR**709591**
A. Erdelyi et al., - Donald Ludwig,
*The Radon transform on euclidean space*, Comm. Pure Appl. Math.**19**(1966), 49–81. MR**190652**, DOI 10.1002/cpa.3160190207 - Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,
*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968** - A. Papoulis,
*Optical systems, singularity functions, complex Hankel transforms*, J. Opt. Soc. Amer.**57**(1967), 207–213. MR**209776**, DOI 10.1364/JOSA.57.000207
E. T. Quinto, private communication.
I. N. Sneddon, - Jet Wimp,
*Two integral transform pairs involving hypergeometric functions*, Proc. Glasgow Math. Assoc.**7**(1965), 42–44 (1965). MR**177138**

*Higher transcendental functions*, vol. 2, McGraw-Hill, New York, 1953. I. S. Gradshteyn and I. M. Ryzhik,

*Tables of integrals*, Academic Press, New York, 1965.

*The use of integral transforms*, McGraw-Hill, New York, 1972.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**99**(1987), 305-312 - MSC: Primary 44A15; Secondary 44A05, 45A05, 92A07
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870790-6
- MathSciNet review: 870790