METRICS OF NEGATIVE CURVATURE
ON VECTOR BUNDLES
MICHAEL T. ANDERSON

ABSTRACT. It is shown that any vector bundle E over a compact base manifold M admits a complete metric of negative (respectively nonpositive) curvature provided M admits a metric of negative (nonpositive) curvature.

1. Introduction. The purpose of this note is to prove the following

THEOREM. Let B be a compact n-dimensional manifold of negative sectional curvature. Then any vector bundle $\Pi: E \to B$ admits a complete metric of negative sectional curvature K_E satisfying $-a \leq K_E \leq -1$ for some constant $a \geq 1$. (Here a depends on the geometry of B and the topology of the bundle $\Pi: E \to B$.)

If B is a compact manifold of nonpositive sectional curvature, then any vector bundle $\Pi: E \to B$ admits a complete metric of nonpositive sectional curvature K_E satisfying $-b \leq K \leq 0$ for some positive constant b.

This result should be compared with a well-known open problem of Gromoll: If M is a compact manifold of positive sectional curvature, does every vector bundle over M admit a complete metric of nonnegative sectional curvature?

The theorem was motivated by, and partially answers, a question of M. Gromov: Does every vector bundle over a compact base B, with a possibly singular metric of negative curvature on B, admit a smooth complete metric of negative curvature (cf. [3] for a discussion of a singular metrics). For example, let T be a hyperbolic group, in the sense of [2], and let X be a metric space on which T acts freely with compact quotient. One may ask if there is an embedding of X in \mathbb{R}^n such that a tubular neighborhood of $X \subset \mathbb{R}^n$ admits a complete metric of negative sectional curvature. This approach is relevant for the Novikov conjecture for such hyperbolic groups.

It is of interest to note that Gromov, Lawson and Thurston [4] have recently shown that most 2-plane bundles E over a compact Riemann surface M_g, of genus greater than one, admit complete metrics of constant curvature -1, provided $|\chi(E)| \leq |\chi(M_g)|$.

I am grateful to M. Gromov for suggesting this problem and for interesting discussions.

2. Preliminaries. We begin with the standard topological description of vector bundles. Let $\Pi_0: P \to B$ be a right principal $O(m)$ bundle, $m \geq 1$, over a smooth n-dimensional manifold B. Let $G = O(m)$ act on \mathbb{R}^m on the left in the usual
way by orthogonal transformations. Define an action of G on $P \times \mathbb{R}^m$ by $g(p, f) = (pg, g^{-1}f)$. Then the quotient space $E = P \times \mathbb{R}^m/G$ is a vector bundle $\Pi_B : E \to B$ with fiber F diffeomorphic to \mathbb{R}^m and structure group G. E is called the vector bundle associated to P. Conversely, given a vector bundle V over B, we may assume without loss of generality that its structure group is $O(m)$. Then there is a principal $O(m)$ bundle over B such that associated bundle constructed above is equivalent to V.

Let $\langle \cdot, \cdot \rangle_G$ denote the negative of the killing form of the Lie algebra $L(G)$ of G; we will also let $\langle \cdot, \cdot \rangle_G$ denote the corresponding bi-invariant metric on G. Let $\langle \cdot, \cdot \rangle_B = ds^2_B$ denote a smooth Riemannian metric on B. If $\Theta : TP \to L(G)$ is any connection 1-form on P, we define a metric on P by

$$ds^2_P = \Pi^*_0(ds^2_B) + \Theta \cdot \Theta,$$

e.q. for vectors $x, y \in TP, \langle x, y \rangle_P = \langle \Pi^*_0 x, \Pi^*_0 y \rangle_B + \langle \Theta(x), \Theta(y) \rangle_G.$

It is well known (cf. [5]) that $\Pi_0 : P \to B$ is a Riemannian submersion, with totally geodesic fibers, with respect to the metrics ds^2_P and ds^2_B. Let H^1 denote the orthogonal complement of the tangent space to the orbits $G \subset P$. Then H^1 coincides with the horizontal spaces for the submersion Π_0, as well as the horizontal spaces for the connection 1-form.

Next we consider the product metric

$$ds^2_{P \times F} = ds^2_P + ds^2_F$$
on $P \times F$, where ds^2_F is the metric of constant curvature $-a^2$ on $F \approx \mathbb{R}^m$; of course $a = 0$ if $m = 1$. Note that $ds^2_{P \times F}$ is invariant under the action of G on $P \times F$, so that $ds^2_{P \times F}$ descends to give a metric ds^2_E on E. We have the following commutative diagram:

\[
\begin{array}{ccc}
G & \to & G \times F \\
\downarrow & & \downarrow \\
P \times F & \to & E \\
\Pi \downarrow & & \downarrow \\
B & \leftarrow & F
\end{array}
\]

With respect to the metrics defined above, each map Π, Π_1, Π_B is a Riemannian submersion with totally geodesic fibers (cf. [5] for a proof).

For later purposes, we recall a formula of O'Neiill [6] relating the curvature of the base and total space of Riemannian submersion. Let $S \to M$ be a Riemannian submersion. Let X, Y be horizontal vector fields on S and let $X_* = \Pi_* X, Y_* = \Pi_* Y$. Then if K denotes sectional curvature, we have

$$K^S(X, Y) = K^M(X_*, Y_*) - \frac{3}{4} \frac{\|X, Y\|_{\gamma}^2}{\|X \wedge Y\|^2},$$

where $[X, Y]_\gamma$ denotes the orthogonal projection of the Lie bracket $[X, Y]$ onto the vertical subspaces of $T(S)$.

3. Construction of metrics. The metric ds^2_E constructed in §2 does not have negative sectional curvature. In fact, the O'Neill formulas [6] imply that the
"mixed" curvature $K^E(X, V)$ for X horizontal and V vertical with respect to Π_B are nonnegative.

In order to construct metrics of negative curvature on E, we consider warped product metrics on $P \times F$. Let $g: F \rightarrow \mathbb{R}$ be an $O(m)$-invariant smooth function, with $g > 0$. Thus, $g = g(r)$, where r is the distance function to $0 \in F$ with respect to the metric ds^2_F. We will specify g more precisely later in this section. Extend g to a function $g: P \times F \rightarrow \mathbb{R}$ by first projecting on the second factor. We consider metrics of the form

$$\text{(3.1)} \quad ds^2_{P \times F} = g^2 \cdot ds^2_P + ds^2_F.$$

Note that ds^2 is also a G-invariant metric and so gives a metric \tilde{ds}^2_E on E. The projection $\Pi: P \times F \rightarrow E$ is a Riemannian submersion with respect to these metrics; the fibers are no longer totally geodesic however. Nevertheless, one may still use (2.3) to relate the curvatures.

We will need explicit descriptions of the horizontal and vertical spaces of Π in these metrics. Thus, let $X(M)$ denote the space of C^∞ vector fields on M. Define maps

$$L(G) \rightarrow X(P), \quad E \rightarrow \tilde{E}(p), \quad \text{and} \quad L(G) \rightarrow X(F), \quad E \rightarrow \tilde{E}(f),$$

where

$$\text{(3.2)} \quad \tilde{E}(p) = \frac{d}{dt} (p \cdot \exp tE) \bigg|_{t=0}, \quad \tilde{E}(f) = \frac{d}{dt} (\exp tE \cdot f) \bigg|_{t=0}.$$

It is well known, and easy to verify, that these maps are Lie algebra homomorphisms. We note there is a constant $C > 0$ such that

$$\text{(3.3)} \quad \frac{1}{C} < \frac{\|\tilde{E}(p)\|}{|E|} < C$$

for all $p \in F$, for any given smooth metric on P. For any $f \in F$, we may choose $(m - 1)$ unit vectors $e_i \in L(G)$, depending on f, such that $\{\tilde{e}_i(f)/\psi(r)\}_{i=1}^{m-1}$ is an orthonormal basis of $T_fS \subset T_fF$, where S is the geodesic r-sphere through f centered at 0. One calculates that

$$\text{(3.4)} \quad \psi(r) = \frac{1}{a} \sinh ar.$$

Thus $\{\tilde{e}_i(f)/\psi(r), \nabla r\}$ forms an orthonormal basis of T_pF. Note that $\tilde{E}(f) = 0$ for any $E \notin \text{span}\{e_i\}_{i=1}^{m-1}$.

One easily sees that the vertical space $V_{p,f} \subset T_{(p,f)}P \times F$ for Π is given by

$$V_{p,f} = \text{span}_{E \in L(G)} [\tilde{E}(p) - \tilde{E}(f)].$$

By the remarks above, we may choose a basis $\{e_i\} \in L(G)$, depending on f, such that

$$V_{p,f} = \text{span}_{i=1}^{m-1} [\tilde{e}_i(p) - \tilde{e}_i(f)] \oplus \text{span}_{i=m}^{N} [\tilde{e}_i(p)],$$

where $N = \dim G$. Note that $\dim V_{p,f} = N$. Let $H^1_{p,f} = (T_pG)^\perp \subset T_pP$ as in §2, $H^2 = \text{span}_{i=1}^{m-1} [\alpha \tilde{e}_i(p) + \tilde{e}_i(f)]$, where

$$\alpha(p, f) = \frac{1}{g^2(p,f)} \frac{\langle \tilde{E}(f), \tilde{E}(f) \rangle}{\langle \tilde{E}(p), \tilde{E}(p) \rangle},$$

and let $H^3 = \nabla r$.

Then there is an orthogonal splitting, with respect to \(ds^3_{P \times F} \), of the form

\[
T(P \times F) = V \oplus H^1 \oplus H^2 \oplus H^3.
\]

The subspace \(H^1 \oplus H^2 \oplus H^3 \) is the horizontal space for the submersion \(P \times F \to E \) with respect to the metrics \(ds^2_{P \times F} \) and \(ds^2_E \).

We now begin with the computation of the curvature of \(ds^3_E \). First, by (2.3), the curvature of \((P \times F, ds^2_{P \times F}) \) and \((E, ds^2_E) \) are related by

\[
\tilde{K}^E(X_*, Y_*) = \tilde{K}^{P \times F}(X, Y) + \frac{3}{4} \frac{|[X, Y]|^2}{|X \wedge Y|}.
\]

for horizontal vectors \(X, Y \in T(P \times F) \). To estimate the first term, we use the formula for the sectional curvature of a warped product given in [1]. Write \(X = X_p + X_F \), where \(X_p \) (resp. \(X_F \)) is the orthogonal projection of \(X \) onto \(TP \) (resp. \(TF \)). If the pair \(\{X, Y\} \) is orthonormal with respect to \(ds^2 \), then

\[
\tilde{K}^{P \times F}(X, Y) = K^F(X_F, Y_F) \cdot |X_F \wedge Y_F|^2 - g(|Y_p|^2D^2g(X_F, X_F) - 2(X_p, Y_p))
\]

\[
+ g^2[K^P(X_p, Y_p) - \frac{1}{g^2}][X_p \wedge Y_p| |X_F \wedge Y_F|^2
\]

Let \(B_\varepsilon \) denote the geodesic ball of radius \(\varepsilon \) about \(0 \in F \). The function \(g \) will depend on a parameter \(\varepsilon \), to be fixed below, and chosen to satisfy the following properties:

(i) \(g \) is convex, i.e. \(D^2g \geq 0 \) on \(F \) and \(D^2g < C_0g \) outside \(B_\varepsilon \).

(ii) \(|\nabla g|^2/g^2 > C_1 \) outside \(B_\varepsilon \).

(iii) \(|\nabla g|^2/g^2 < C_2 \) outside some compact set of \(F \).

(iv) \(|\nabla g|^2(x) > C_3 \cdot r(x) \) for \(x \in B_\varepsilon \).

(v) \(g \leq 1 \) in \(B_\varepsilon \), \(g > 1 \) outside \(B_\varepsilon \).

Here \(C_0, C_1, C_2, C_3 \) are constants, also to be specified below. For example, one may choose \(g \) of the form

\[
g = \{a_1 + a_2r^{3/2}\}e^{asr}
\]

and adjust \(\{a_i\} \) to satisfy (3.8). Basically, \(a_1 \) is small and \(a_2, a_3 \) large.

Using (3.8) we may estimate (3.7). First, since \(g \) is convex, the second term in (3.7) within the brackets is nonnegative. Since \(F \) has curvature \(-a^2 \), we find

\[
\tilde{K}^{P \times F}(X, Y) \leq -a^2|X_F \wedge Y_F|^2 + 2g[K^P(X_p, Y_p) - |\nabla g|^2]|X_p \wedge Y_p|^2.
\]

We now consider several cases. Suppose \(f \notin B_\varepsilon \). Choose \(C_1 = a^2 + \sup K^P(X_p, Y_p) \).

By (3.8)(ii) and (v) we obtain

\[
\tilde{K}^{P \times F}(X, Y) \leq -a^2|X_F \wedge Y_F|^2 - a^2g^2|X_p \wedge Y_p|^2
\]

\[
\leq a^2|X_F \wedge Y_F|^2 - a^2|X_p \wedge Y_p|^2 \leq -a^2/4.
\]

Next suppose \(f \in B_\varepsilon \). If \(|X_F \wedge Y_F|^2 \geq |X_p \wedge Y_p|^2 \), then setting \(b = \sup K^P(X_p, Y_p) \) we have

\[
\tilde{K}^{P \times F}(X, Y) \leq -a^2|X_F \wedge Y_F|^2 + b|X_p \wedge Y_p|^2
\]

\[
\leq \left[-a^2 + \frac{b}{g^2} \right]|X_F \wedge Y_F|^2 \leq \frac{1}{4} \left[-a^2 + \frac{b}{g^2} \right]
\]

assuming \(-a^2 + b/g^2 \leq 0 \).
Finally, suppose $|X_p \wedge Y_p|^2 < |X_p \wedge Y_p|^2$ and $f \in B_{\varepsilon}$. We may write $X_p = X_B + X_2$, where $X_B \in H^1$ and $X_2 = \alpha \sum_{i=1}^{n-1} a_i e_i(p) \in (H^2)_p$. It is important to note that $|X_2| \sim -\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$. To see this, we have $|X_F| < 1$, so that $|\sum a_i e_i(f)| < 1$. Since, by definition, $\alpha = O(|e(f)|^2)$, the claim follows. Note also that $|X_B| \sim$ is bounded away from zero as $f \rightarrow 0$, since by our assumption $|X_B|$ is bounded away from zero. These same remarks apply to Y_p and we obtain the estimate

$$K^P(X_p, Y_p) = K^P(X_B, Y_B) + O(\varepsilon).$$

Now (2.3) applied to the Riemannian submersion $\Pi_0: P \rightarrow B$ gives

$$K^P(X_B, Y_B) = K^B(X_B, Y_B) - \frac{3}{4} \frac{|[X_B, Y_B]|^2}{|X_B \wedge Y_B|^2}.$$

Thus, for the last case, we obtain

$$\begin{align*}
\tilde{K}^P \times F(X, Y) &\leq -a^2 |X_F \wedge Y_F|^2 \\
&+ \left[K^B(X_B, Y_B) - \frac{3}{4} \frac{|[X_B, Y_B]|^2}{|X_B \wedge Y_B|^2} - |\nabla g|^2 + O(\varepsilon) \right] g^2 |X_P \wedge Y|^2.
\end{align*}$$

In order to estimate the second term of (3.6), we use the following Lemma.

Lemma. Let X, Y be horizontal fields on $(P \times F, ds^2)$. Then there is a constant k, depending on ds^2_p and inf g, but not on a, such that

$$||[X, Y]||^2 < k \cdot |X \wedge Y|^2.$$

Proof. Since both sides of (3.12) are bilinear, it is sufficient to check (3.12) on a basis for the horizontal fields. Thus, let $X = \sum X_i, Y = \sum Y_i$, where $X_i, Y_i \in H^i$. One verifies that

$$[X_3, Y_1] = [X_2, Y_3] = 0, \quad [X_1, Y_2] = [X_2, Y_1] = 0.$$

Thus $[X, Y] = [X_1, Y_1] + [X_2, Y_2]$ and

$$||[X, Y]||^2 < ||[X_1, Y_1]||^2 + ||[X_2, Y_2]||^2.$$

Applying (2.3) to the submersion $\Pi_0: P \rightarrow B$ gives

$$K^P(X_1, Y_1) = K^B(X_1, Y_1) - \frac{3}{4} \frac{|[X_1, Y_1]|^2}{|X_1 \wedge Y_1|^2},$$

note that since X_1, Y_1, and $[X_1, Y_1] \in TP$, the vertical projections for Π_0 and Π agree. Since K^P and K^B are bounded, we have

$$||[X_1, Y_1]||^2 < k |X_1 \wedge Y_1|^2,$$

and thus

$$||[X_1, Y_1]||^2 < k |X_1 \wedge Y_1|^2.$$

We estimate the second term in (3.13) on a basis of the form $B_i = \alpha e_i(p) + e_i(f)$, where at a given $p_0 \in P$, we assume $(B_i, B_j)(p_0, f) = 0$ if $i \neq j$. We have

$$[B_i, B_j] = \alpha^2 [e_i(p), e_j(p)] + [e_i(f), e_j(f)] = \alpha^2 C_{ij}^k e_k(p) + C_{ij}^k e_k(f),$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where we have used the fact that the maps $E \to \tilde{E}(p)$ and $E \to \tilde{E}(f)$ are Lie algebra homomorphisms; here C^k_{ij} are the structure constants of $L(G)$. Thus

$$
|[B_i, B_j]|^2 \sim \sum_{k,l,m} \frac{[\alpha^2 C^k_{ij}(e_k(p), e_k(m)) - C^k_{ij}(e_l(f), e_l(m))]|e_m(p) - e_l(f)|^2}{|e_m(p) - e_l(f)|^2} \leq C \cdot \frac{\alpha^4 |e(p)|^4 + |e(f)|^4}{|e(p) - e(f)|^2},
$$

where C is a constant independent of the metrics. Since $|e(p) - e(f)|^2 \geq L$ for some constant L depending only on $\inf g$, we have

$$
|[B_i, B_j]|^2 \leq C^1[\alpha^4 |e(p)|^4 + |e(f)|^4].
$$

On the other hand,

$$
|B_i \wedge B_j|^2 = |B_i|^2 |B_j|^2 - <B_i, B_j>|^2 = |\alpha e_i(p) + e_i(f)|^2 - |\alpha e_j(p) + e_j(f)|^2 \leq C[\alpha^4 |e(p)|^4 + |e(f)|^4].
$$

Combining the last two estimates with (3.15) gives the result.

We now combine the above estimates to determine $K^E(X, Y)$. As before, we deal with several cases. We assume $m \geq 2$ and will discuss the case $m = 1$ at the end

(i) $f \not\in B_\varepsilon$: Combining (3.9) and (3.12) and substituting into (3.6) gives

$$
(3.16) \quad K^E(X, Y) \leq -\frac{a^2}{4} + k.
$$

(ii) $f \in B_\varepsilon$ and $|X_F \wedge Y_F|^2 \geq |X_p \wedge Y_p|^2$: Using (3.10) and (3.12) as above gives

$$
(3.17) \quad K^E(X, Y) \leq \frac{1}{4}[-a^2 + b/g^2] + k.
$$

Thus, making a choice of g satisfying (3.8), we see that we may choose a sufficiently large so that $K^E(X, Y) < 0$ in the above two cases. In particular, the curvature of E may be made negative outside a neighborhood of the 0-section of $\Pi_B: E \to B$, regardless of the curvature of B.

(iii) $f \in B_\varepsilon$ and $|X_F \wedge Y_F|^2 < |X_p \wedge Y_p|^2$: Using (3.11) and the fact that $|X \wedge Y| = 1$, we estimate (3.6) as

$$
(3.18) \quad K^E(X, Y) \leq -\frac{a^2}{4} |X_F \wedge Y_F|^2 + \frac{1}{4} |X_p \wedge Y_p|^2 + \frac{3}{4} |X_1, Y_1|^2 + \frac{3}{4} |X_2, Y_2|^2 - |\nabla g|^2 + O(\varepsilon)
$$

$$
\leq -\frac{a^2}{4} |X_F \wedge Y_F|^2 + |K^B(X_B, Y_B) + O(\varepsilon) - |\nabla g|^2| \frac{1}{g^2} |X_p \wedge Y_p|^2 + O(\varepsilon),
$$

where we have used (3.8)(v).

Now suppose first that $K^B(X_B, Y_B) < 0$, say $K^B(X_B, Y_B) \leq -m^2 < 0$. Choosing ε sufficiently small in (3.18), we obtain

$$
(3.19) \quad K^E(X, Y) \leq -C
$$
for some constant \(C > 0 \). We may combine (3.19) with (3.16) and (3.17) and rescale the metric if necessary to obtain \(\tilde{K}^E(X, Y) \leq -1 \) for all \(X, Y \in T(E) \).

Next suppose only \(K^B(X_B, Y_B) \leq 0 \). Then by (3.18)

\[
\tilde{K}^E(X, Y) \leq -a^2 |X_F \wedge Y_F|^2 + |O(\varepsilon) - C_3 \varepsilon| \frac{1}{g^2} |X_p \wedge Y_p|^2 + O(\varepsilon).
\]

We may choose \(\varepsilon \) sufficiently small and \(C_3 \) sufficiently large in (3.8) (iv) so that \(|O(\varepsilon) - C_3 \varepsilon| |X_p \wedge Y_p|^2 / g^2 \) is sufficiently negative for \(\varepsilon \neq 0 \), to dominate the last \(O(\varepsilon) \) term. We then obtain \(\tilde{K}^E(X, Y) \leq 0 \). Combining this with (3.16) and (3.17) gives a complete metric on \(E \) of nonpositive sectional curvature.

Finally, it is straightforward to verify that the condition \(D^2g < C_0g \) outside \(B_\varepsilon \) for some constant \(C_0 \) implies in both cases \(K^B < 0 \) and \(K^B \leq 0 \) that

\[
\tilde{K}^E(X, Y) \geq -M^2
\]

for some constant \(M \). This proves the theorem in the case \(m \geq 2 \).

Suppose finally that \(m = 1 \). In the notation above, any horizontal 2-plane for \(\Pi: P \times \mathbb{R} \rightarrow E \) has a basis of the form \(X = X_B + c \cdot \nabla r, Y = Y_B \). Since \([X, Y] V = 0\), we obtain from (3.7)

\[
\tilde{K}^E(X, Y) = \tilde{K}^{P \times \mathbb{R}}(X, Y) = -g c^2 |Y_B|^2 g^{11} + g^2 [K^B(X_B, Y_B) - |\nabla g|^2] |X_B \wedge Y_B|^2.
\]

This can be made negative, respectively nonpositive, depending on the curvature of \(B \), by choosing \(g \) to be any convex function. In particular, \(g \) satisfying (3.8) suffices to prove the theorem in this case also.

REFERENCES

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125