METRICS OF NEGATIVE CURVATURE ON VECTOR BUNDLES

MICHAEL T. ANDERSON

ABSTRACT. It is shown that any vector bundle E over a compact base manifold M admits a complete metric of negative (respectively nonpositive) curvature provided M admits a metric of negative (nonpositive) curvature.

1. Introduction. The purpose of this note is to prove the following

THEOREM. Let B be a compact n-dimensional manifold of negative sectional curvature. Then any vector bundle $\Pi: E \to B$ admits a complete metric of negative sectional curvature K_E satisfying $-a \leq K_E \leq -1$ for some constant $a \geq 1$. (Here a depends on the geometry of B and the topology of the bundle $\Pi: E \to B$.)

If B is a compact manifold of nonpositive sectional curvature, then any vector bundle $\Pi: E \to B$ admits a complete metric of nonpositive sectional curvature K_E satisfying $-b \leq K \leq 0$ for some positive constant b.

This result should be compared with a well-known open problem of Gromoll: If M is a compact manifold of positive sectional curvature, does every vector bundle over M admit a complete metric of nonnegative sectional curvature?

The theorem was motivated by, and partially answers, a question of M. Gromov: Does every vector bundle over a compact base B, with a possibly *singular* metric of negative curvature on B, admit a smooth complete metric of negative curvature (cf. [3] for a discussion of a singular metrics). For example, let T be a hyperbolic group, in the sense of [2], and let X be a metric space on which T acts freely with compact quotient. One may ask if there is an embedding of X in \mathbb{R}^n such that a tubular neighborhood of $X \subset \mathbb{R}^n$ admits a complete metric of negative sectional curvature. This approach is relevant for the Novikov conjecture for such hyperbolic groups.

It is of interest to note that Gromov, Lawson and Thurston [4] have recently shown that most 2-plane bundles E over a compact Riemann surface M_g , of genus greater than one, admit complete metrics of constant curvature -1, provided $|\chi(E)| \leq |\chi(M_g)|$.

I am grateful to M. Gromov for suggesting this problem and for interesting discussions.

2. Preliminaries. We begin with the standard topological description of vector bundles. Let $\Pi_0: P \to B$ be a right principal O(m) bundle, $m \ge 1$, over a smooth *n*-dimensional manifold *B*. Let G = O(m) act on \mathbb{R}^m on the left in the usual

Received by the editors November 23, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C20; Secondary 58G30. The author was partially supported by an NSF Postdoctoral Fellowship.

way by orthogonal transformations. Define an action of G on $P \times \mathbb{R}^m$ by $g(p, f) = (pg, g^{-1}f)$. Then the quotient space $E = P \times \mathbb{R}^m/G$ is a vector bundle $\Pi_B : E \to B$ with fiber F diffeomorphic to \mathbb{R}^m and structure group G. E is called the vector bundle associated to P. Conversely, given a vector bundle V over B, we may assume without loss of generality that its structure group is O(m). Then there is a principal O(m) bundle over B such that associated bundle constructed above is equivalent to V.

Let \langle , \rangle_G denote the negative of the killing form of the Lie algebra L(G) of G; we will also let \langle , \rangle_G denote the corresponding bi-invariant metric on G. Let $\langle , \rangle_B = ds_B^2$ denote a smooth Riemannian metric on B. If $\Theta: TP \to : L(G)$ is any connection 1-form on P, we define a metric on P by

(2.1)
$$ds_P^2 = \Pi_0^* (ds_B^2) + \Theta \cdot \Theta,$$

i.e. for vectors $x, y \in T_p P$, $\langle x, y \rangle_P = \langle \Pi_* x, \Pi_* y \rangle_B + \langle \Theta(x), \Theta(y) \rangle_G$.

It is well known (cf. [5]) that $\Pi_0: P \to B$ is a Riemannian submersion, with totally goedesic fibers, with respect to the metrics ds_p^2 and ds_B^2 . Let H^1 denote the orthogonal complement of the tangent space to the orbits $G \subset P$. Then H^1 coincides with the horizontal spaces for the submersion Π_0 , as well as the horizontal spaces for the connection 1-form.

Next we consider the product metric

$$ds_{P\times F}^2 = ds_P^2 + ds_F^2$$

on $P \times F$, where ds_F^2 is the metric of constant curvature $-a^2$ on $F \approx \mathbf{R}^m$; of course a = 0 if m = 1. Note that $ds_{P \times F}^2$ is invariant under the action of G on $P \times F$, so that $ds_{P \times F}^2$ descends to give a metric ds_E^2 on E. We have the following commutative diagram:

With respect to the metrics defined above, each map Π, Π_1, Π_B is a Riemannian submersion with totally geodesic fibers (cf. [5] for a proof).

For later purposes, we recall a formula of O'Neill [6] relating the curvature of the base and total space of Riemannian submersion. Let $S \to M$ be a Riemannian submersion. Let X, Y be horizontal vector fields on S and let $X_* = \Pi_* X, Y_* = \Pi_* Y$. Then if K denotes sectional curvature, we have

(2.3)
$$K^{S}(X,Y) = K^{M}(X_{*},Y_{*}) - \frac{3}{4} \frac{|[X,Y]^{\vee}|^{2}}{|X \wedge Y|^{2}},$$

where $[X, Y]^{\vee}$ denotes the orthogonal projection of the Lie bracket [X, Y] onto the vertical subspaces of T(S).

3. Construction of metrics. The metric ds_E^2 constructed in §2 does not have negative sectional curvature. In fact, the O'Neill formulas [6] imply that the

"mixed" curvature $K^E(X, V)$ for X horizontal and V vertical with respect to Π_B are nonnegative.

In order to construct metrics of negative curvature on E, we consider warped product metrics on $P \times F$. Let $g: F \to \mathbf{R}$ be an O(m)-invariant smooth function, with g > 0. Thus, g = g(r), where r is the distance function to $0 \in F$ with respect to the metric ds_F^2 . We will specify g more precisely later in this section. Extend gto a function $g: P \times F \to \mathbf{R}$ by first projecting on the second factor. We consider metrics of the form

(3.1)
$$d\tilde{s}_{P\times F}^2 = g^2 \cdot ds_P^2 + ds_F^2.$$

Note that $d\tilde{s}^2$ is also a *G*-invariant metric and so gives a metric $d\tilde{s}_E^2$ on *E*. The projection $\Pi: P \times F \to E$ is a Riemannian submersion with respect to these metrics; the fibers are no longer totally geodesic however. Nevertheless, one may still use (2.3) to relate the curvatures.

We will need explicit descriptions of the horizontal and vertical spaces of Π in these metrics. Thus, let X(M) denote the space of C^{∞} vector fields on M. Define maps

$$L(G) o X(P), \quad E o \widetilde{E}(p), \quad ext{and} \quad L(G) o X(F), \quad E o \widetilde{E}(f),$$

where

(3.2)
$$\tilde{E}(p) = \frac{d}{dt}(p \cdot \exp tE) \Big|_{t=0}, \qquad \tilde{E}(f) = \frac{d}{dt}(\exp tE \cdot f) \Big|_{t=0}$$

It is well known, and easy to verify, that these maps are Lie algebra homomorphisms. We note there is a constant C > 0 such that

(3.3)
$$\frac{1}{C} < \frac{|\ddot{E}(p)|}{|E|} < C$$

for all $p \in F$, for any given smooth metric on P. For any $f \in F$, we may choose (m-1) unit vectors $e_i \in L(G)$, depending on f, such that $\{\tilde{e}_i(f)/\psi(r)\}^{m-1}$ is an orthonormal basis of $T_f S \subset T_f F$, where S is the geodesic r-sphere through f centered at 0. One calculates that

(3.4)
$$\psi(r) = \frac{1}{a} \sinh ar.$$

Thus $\{\tilde{e}_i(f)/\psi(r), \nabla r\}$ forms an orthonormal basis of $T_p F$. Note that $\tilde{E}(f) = 0$ for any $E \notin \operatorname{span}\{e_i\}_1^{m-1}$.

One easily sees that the vertical space $V_{p,f} \subset T_{(p,f)}P \times F$ for Π is given by

$$V_{p,f} = \operatorname{span}_{E \in L(G)} [\tilde{E}(p) - \tilde{E}(f)].$$

By the remarks above,, we may choose a basis $\{e_i\} \in L(G)$, depending on f, such that

$$V_{p,f} = \mathop{\mathrm{span}}\limits_{i=1}^{m-1} [ilde{e}_i(p) - ilde{e}_i(f)] \oplus \mathop{\mathrm{span}}\limits_{i=m}^N [ilde{e}_i(p)],$$

where $N = \dim G$. Note that $\dim V_{p,f} = N$. Let $H_{p,f}^1 = (T_p G)^{\perp} \subset T_p P$ as in §2, $H^2 = \operatorname{span}_{i=1}^{m-1} [\alpha \tilde{e}_i(p) + \tilde{e}_i(f)]$, where

$$lpha(p,f) = rac{1}{g^2(p,f)} rac{\langle \dot{E}(f), E(f)
angle}{\langle \tilde{E}(p), \tilde{E}(p)
angle},$$

and let $H^3 = \operatorname{span} \nabla r$.

Then there is an orthogonal splitting, with respect to $d\tilde{s}_{P\times F}^2$, of the form

$$(3.5) T(P \times F) = V \oplus H^1 \oplus H^2 \oplus H^3.$$

The subspace $H^1 \oplus H^2 \oplus H^3$ is the horizontal space for the submersion $\Pi: P \times F \to E$ with respect to the metrics $d\tilde{s}_{P \times F}^2$ and $d\tilde{s}_E^2$.

We now begin with the computation of the curvature of $d\tilde{s}_E^2$. First, by (2.3), the curvature of $(P \times F, d\tilde{s}_{P \times F}^2)$ and $(E, d\tilde{s}_E^2)$ are related by

(3.6)
$$\tilde{K}^{E}(X_{*}, Y_{*}) = \tilde{K}^{P \times F}(X, Y) + \frac{3}{4} \frac{|[X, Y]^{\vee}|^{2}}{|X \wedge Y|_{\sim}}$$

for horizontal vectors $X, Y \in T(P \times F)$. To estimate the first term, we use the formula for the sectional curvature of a warped product given in [1]. Write $X = X_p + X_F$, where X_p (resp. X_F) is the orthogonal projection of X onto TP (resp. TF). If the pair $\{X, Y\}$ is orthonormal with respect to $d\tilde{s}^2$, then

$$\tilde{K}^{P \times F}(X,Y) = K^{F}(X_{F},Y_{F}) \cdot |X_{F} \wedge Y_{F}|^{2} - g[|Y_{p}|^{2}D^{2}g(X_{F},X_{F}) - 2\langle X_{P},Y_{P}\rangle$$

$$(3.7) \qquad \qquad \cdot D^{2}g(X_{F},Y_{F}) + |X_{P}|^{2}D^{2}g(X_{F},Y_{F})]$$

$$+ g^{2}[K^{P}(X_{P},Y_{P}) - |\nabla g|^{2}]|X_{P} \wedge Y_{P}|^{2}$$

Let B_{ε} denote the geodesic ball of radius ε about $0 \in F$. The function g will depend on a parameter ε , to be fixed below, and chosen to satisfy the following properties:

(i) g is convex, i.e. $D^2g \ge 0$ on F and $D^2g < C_0g$ outside B_{ε} . (ii) $|\nabla g|^2/g^2 > C_1$ outside B_{ε} .

(3.8) (iii)
$$|\nabla g|^2/g^2 < C_2$$
 outside some compact set of F .
(iv) $|\nabla g|^2(x) > C_3 \cdot r(x)$ for $x \in B_{\varepsilon}$.
(v) $g \leq 1$ in B_{ε} , $g > 1$ outside B_{ε} .

Here C_0, C_1, C_2, C_3 are constants, also to be specified below. For example, one may choose g of the form

$$g = \{a_1 + a_2 r^{3/2}] e^{a_3 r}$$

and adjust $\{a_i\}$ to satisfy (3.8). Basically, a_1 is small and a_2, a_3 large.

Using (3.8) we may estimate (3.7). First, since g is convex, the second term in (3.7) within the brackets is nonnegative. Since F has curvature $-a^2$, we find

$$\tilde{K}^{P\times F}(X,Y) \leq -a^2 |X_F \wedge Y_F|^2 + g^2 [K^p(X_p,Y_p) - |\nabla g|^2] |X_p \wedge Y_p|^2.$$

We now consider several cases. Suppose $f \notin B_{\varepsilon}$. Choose $C_1 = a^2 + \sup K^p(X_p, Y_p)$. By (3.8)(ii) and (v) we obtain

(3.9)
$$\tilde{K}^{P \times F}(X,Y) \leq -a^2 |X_F \wedge Y_F|^2 - a^2 g^4 |X_P \wedge Y_P|^2 \\ \leq a^2 |X_F \wedge Y_F|^2_{\sim} - a^2 |X_P \wedge Y_P|^2_{\sim} \leq -a^2/4$$

Next suppose $f \in B_{\varepsilon}$. If $|X_F \wedge Y_F|^2 \ge |X_p \wedge Y_p|^2_{\sim}$, then setting $b = \sup K^p(X_p, Y_p)$ we have

(3.10)
$$\tilde{K}^{P \times F}(X,Y) \leq -a^2 |X_F \wedge Y_F|^2 + \frac{b}{g^2} |X_p \wedge Y_p|^2_{\sim} \leq \left[-a^2 + \frac{b}{g^2} \right] |X_F \wedge Y_F|^2 \leq \frac{1}{4} \left[-a^2 + \frac{b}{g^2} \right]$$

assuming $-a^2 + b/g^2 \leq 0$.

Finally, suppose $|X_F \wedge Y_F|^2 < |X_p \wedge Y_p|^2_{\sim}$ and $f \in B_{\varepsilon}$. We may write $X_p = X_B + X_2$, where $X_B \in H^1$ and $X_2 = \alpha \sum_{1}^{n-1} a_i e_i(p) \in (H^2)_p$. It is important to note that $|X_2|_{\sim} \to 0$ as $\varepsilon \to 0$. To see this, we have $|X_F| < 1$, so that $|\sum a_i e_i(f)| < 1$. Since, by definition, $\alpha = O(|e(f)|^2)$, the claim follows. Note also that $|X_B|_{\sim}$ is bounded away from zero as $f \to 0$, since by our assumption $|X_p|$ is bounded away from zero. These same remarks apply to Y_p and we obtain the estimate

$$K^{P}(X_{p}, Y_{p}) = K^{p}(X_{B}, Y_{B}) + O(\varepsilon).$$

Now (2.3) applied to the Riemannian submersion $\Pi_0: P \to B$ gives

$$K^{P}(X_{B}, Y_{B}) = K^{B}(X_{B}, Y_{B}) - \frac{3}{4} \frac{|[X_{B}, Y_{B}]^{\vee}|^{2}}{|X_{B} \wedge Y_{B}|^{2}}.$$

Thus, for the last case, we obtain

(3.11)
$$\tilde{K}^{P \times F}(X,Y) \leq -a^2 |X_F \wedge Y_F|^2 + \left[K^B(X_B,Y_B) - \frac{3}{4} \frac{|[X_B,Y_B]^{\vee}|^2}{|X_B \wedge Y_B|^2} - |\nabla g|^2 + O(\varepsilon) \right] g^2 |X_P \wedge Y_p|^2.$$

In order to estimate the second term of (3.6), we use the following Lemma.

LEMMA. Let X, Y be horizontal fields on $(P \times F, d\tilde{s}^2)$. Then there is a constant k, depending on ds_P^2 and $\inf g$, but not on a, such that

$$|[X,Y]^{\vee}|_{\sim}^2 < k \cdot |X \wedge Y|_{\sim}^2.$$

PROOF. Since both sides of (3.12) are bilinear, it is sufficient to check (3.12) on a basis for the horizontal fields. Thus, let $X = \sum X_i$, $Y = \sum Y_i$, where $X_i, Y_i \in H^i$. One verifies that

$$[X_3, Y_i] = [X_i, Y_3] = 0,$$
 $[X_1, Y_2] = [X_2, Y_1] = 0.$

Thus $[X, Y] = [X_1, Y_1] + [X_2, Y_2]$ and

(3.13)
$$|[X,Y]^{\vee}|^{2}_{\sim} = |[X_{1},Y_{1}]^{\vee}|^{2}_{\sim} + |[X_{2},Y_{2}]^{\vee}|^{2}_{\sim}.$$

Applying (2.3) to the submersion $\Pi_0: P \to B$ gives

(3.14)
$$K^{p}(X_{1},Y_{1}) = K^{B}(X_{1},Y_{1}) - \frac{3}{4} \frac{|[X_{1},Y_{1}]^{\vee}|^{2}}{|X_{1} \wedge Y_{1}|^{2}};$$

note that since X_1, Y_1 , and $[X_1, Y_1] \in TP$, the vertical projections for Π_0 and Π agree. Since K^P and K^B are bounded, we have

$$|[X_1, Y_1]^{\vee}|^2 < k|X_1 \wedge Y_1|^2,$$

and thus

$$|[X_1, Y_1]^{\vee}|^2_{\sim} < k|X_1 \wedge Y_1|^2_{\sim}.$$

We estimate the second term in (3.13) on a basis of the form $B_i = \alpha e_i(p) + e_i(f)$, where at a given $p_0 \in P$, we assume $\langle B_i, B_j \rangle (p_0, f) = 0$ if $i \neq j$. We have

$$\begin{split} [B_i, B_j] &= \alpha^2 [e_i(p), e_j(p)] + [e_i(f), e_j(f)] \\ &= \alpha^2 C_{ij}^k e_k(p) + C_{ij}^k e_k(f), \end{split}$$

where we have used the fact that the maps $E \to \tilde{E}(p)$ and $E \to \tilde{E}(f)$ are Lie algebra homomorphisms; here C_{ij}^k are the structure constants of L(G). Thus

$$\begin{split} |[B_i, B_j]^{\vee}|_{\sim}^2 &= \sum_{k,l,m} \frac{[\alpha^2 C_{ij}^k \langle e_k(p), e_k(m) \rangle_{\sim} - C_{ij}^l \langle e_l(f), e_m(f) \rangle_{\sim}]^2}{|e_m(p) - e_m(f)|_{\sim}^2} \\ &\leq C \cdot \frac{\alpha^4 |e(p)|_{\sim}^4 + |e(f)|_{\sim}^4}{|e(p) - e(f)|_{\sim}^2}, \end{split}$$

where C is a constant independent of the metrics. Since $|e(p) - e(f)|^2_{\sim} \ge L$ for some constant L depending only on $\inf g$, we have

$$|[B_i, B_j]^{\vee}|^2 \le C^1[\alpha^4 |e(p)|^4_{\sim} + |e(f)|^4_{\sim}].$$

On the other hand,

$$\begin{aligned} |B_i \wedge B_j|^2_{\sim} &= |B_i|^2_{\sim} |B_j|^2_{\sim} - \langle B_i, B_j \rangle^2_{\sim} \\ &= |\alpha e_i(p) + e_i(f)|^2_{\sim} \cdot |\alpha e_j(p) + e_j(f)|^2_{\sim} \\ &\leq C[\alpha^4 |e(p)|^4_{\sim} + |e(f)|^4_{\sim}]. \end{aligned}$$

Combining the last two estimates with (3.15) gives the result.

We now combine the above estimates to determine $\tilde{K}^E(X,Y)$. As before, we deal with several cases. We assume $m \ge 2$ and will discuss the case m = 1 at the end

(i) $f \notin B_{\varepsilon}$: Combining (3.9) and (3.12) and substituting into (3.6) gives

(3.16)
$$\tilde{K}^E(X,Y) \le -a^2/4 + k.$$

(ii) $f \in B_{\varepsilon}$ and $|X_F \wedge Y_F|^2 \ge |X_p \wedge Y_p|^2$: Using (3.10) and (3.12) as above gives

(3.17)
$$\tilde{K}^{E}(X,Y) \leq \frac{1}{4}[-a^{2} + b/g^{2}] + k.$$

Thus, making a choice of g satisfying (3.8), we see that we may choose a sufficiently large so that $\tilde{K}^{E}(X,Y) < 0$ in the above two cases. In particular, the curvature of E may be made negative outside a neighborhood of the 0-section of $\Pi_{B}: E \to B$, regardless of the curvature of B.

(iii) $f \in B_{\varepsilon}$ and $|X_F \wedge Y_F|^2 < |X_p \wedge Y_p|^2$. Using (3.11) and the fact that $|X \wedge Y|_{\sim} = 1$, we estimate (3.6) as

$$\begin{split} \tilde{K}^{E}(X,Y) &\leq -a^{2}|X_{F} \wedge Y_{F}|^{2} + \left[K^{B}(X_{B},Y_{B}) - \frac{3}{4}\frac{|[X_{B},X_{B}]^{\vee}|^{2}}{|X_{B} \wedge X_{B}|^{2}} - |\nabla g|^{2} + O(\varepsilon)\right] \\ & \cdot \frac{1}{g^{2}}|X_{p} \wedge Y_{p}|^{2}_{\sim} + \frac{3}{4}|[X_{B},Y_{B}]^{\vee}|^{2}_{\sim} + \frac{3}{4}|X_{2},Y_{2}]^{\vee}|^{2}_{\sim} \\ &\leq -a^{2}|X_{F} \wedge Y_{F}|^{2} + [K^{B}(X_{B},Y_{B}) + O(\varepsilon) - |\nabla g|^{2}]\frac{1}{g^{2}}|X_{p} \wedge Y_{p}|^{2} + O(\varepsilon), \end{split}$$

where we have used (3.8)(v).

Now suppose first that $K^B(X_B, Y_B) < 0$, say $K^B(X_B, Y_B) \le -m^2 < 0$. Choosing ε sufficiently small in (3.18), we obtain

for some constant C > 0. We may combine (3.19) with (3.16) and (3.17) and rescale the metric if necessary to obtain $\tilde{K}^{E}(X,Y) \leq -1$ for all $X, Y \in T(E)$.

Next suppose only $K^B(X_B, Y_B) \leq 0$. Then by (3.18)

$$\tilde{K}^{E}(X,Y) \leq -a^{2}|X_{F} \wedge Y_{F}|^{2} + [O(\varepsilon) - C_{3}\varepsilon]\frac{1}{g^{2}}|X_{p} \wedge Y_{p}|^{2}_{\sim} + O(\varepsilon).$$

We may choose ε sufficiently small and C_3 sufficiently large in (3.8) (iv) so that $[O(\varepsilon) - C_3\varepsilon]|X_p \wedge Y_p|^2_{\sim}/g^2$ is sufficiently negative for $\varepsilon \neq 0$, to dominate the last $O(\varepsilon)$ term. We than obtain $\tilde{K}^E(X,Y) \leq 0$. Combining this with (3.16) and (3.17) gives a complete metric on E of nonpositive sectional curvature.

Finally, it is straightforward to verify that the condition $D^2g < C_0g$ outside B_{ε} for some constant C_0 implies in both cases $K^B < 0$ and $K^B \leq 0$ that

$$\tilde{K}^E(X,Y) \ge -M^2$$

for some constant M. This proves the theorem in the case $m \ge 2$.

Suppose finally that m = 1. In the notation above, any horizontal 2-plane for $\Pi: P \times \mathbf{R} \to E$ has a basis of the form $X = X_B + c \cdot \nabla r, Y = Y_B$. Since $[X, Y]^{\vee} = 0$, we obtain from (3.7)

$$\tilde{K}^{E}(X,Y) = \tilde{K}^{P \times \mathbf{R}}(X,Y) = -gc^{2}|Y_{B}|^{2}g^{11} + g^{2}[K^{B}(X_{B},Y_{B}) - |\nabla g|^{2}]|X_{B} \wedge Y_{B}|^{2}.$$

This can be made negative, respectively nonpositive, depending on the curvature of B, by choosing g to be any convex function. In particular, g satisfying (3.8) suffices to prove the theorem in this case also.

REFERENCES

- R. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- M. Gromov, Hyperbolic manifolds, groups and actions, Proc. Stony Brook Conf. on Riemann Surfaces (I. Kra, Ed.), Ann. of Math. Studies, vol. 97, Princeton Univ. Press, Princeton, N.J., 1981.
- 3. ____, Infinite groups as geometric objects, Proc. I.C.M, Warsaw, 1983.
- 4. M. Gromov, H. B. Lawson, Jr., and W. Thurston, Hyperbolic 4-manifolds and conformally flat 3-manifolds (preprint).
- 5. J. Nash, Positive Ricci curvature on fiber bundles, J. Differential Geom. 14 (1979), 241-254.
- 6. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASA-DENA, CALIFORNIA 91125