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METRICS OF NEGATIVE CURVATURE
ON VECTOR BUNDLES

MICHAEL T. ANDERSON

ABSTRACT. It is shown that any vector bundle E over a compact base man-

ifold M admits a complete metric of negative (respectively nonpositive) cur-

vature provided M admits a metric of negative (nonpositive) curvature.

1. Introduction. The purpose of this note is to prove the following

THEOREM. Let B be a compact n-dimensional manifold of negative sectional

curvature. Then any vector bundle IT : E —> B admits a complete metric of negative

sectional curvature KE satisfying —a < KE < — 1 for some constant a > 1. (Here

a depends on the geometry of B and the topology of the bundle II: E —> B.)

If B is a compact manifold of nonpositive sectional curvature, then any vector

bundle II : E —* B admits a complete metric of nonpositive sectional curvature KE

satisfying —b<K<0 for some positive constant b.

This result should be compared with a well-known open problem of Gromoll: If

M is a compact manifold of positive sectional curvature, does every vector bundle

over M admit a complete metric of nonnegative sectional curvature?

The theorem was motivated by, and partially answers, a question of M. Gromov:

Does every vector bundle over a compact base B, with a possibly singular metric

of negative curvature on B, admit a smooth complete metric of negative curvature

(cf. [3] for a discussion of a singular metrics). For example, let T be a hyperbolic

group, in the sense of [2], and let X be a metric space on which T acts freely with

compact quotient. One may ask if there is an embedding of X in Rn such that a

tubular neighborhood of X C R™ admits a complete metric of negative sectional

curvature. This approach is relevant for the Novikov conjecture for such hyperbolic

groups.

It is of interest to note that Gromov, Lawson and Thurston [4] have recently

shown that most 2-plane bundles E over a compact Riemann surface Mg, of genus

greater than one, admit complete metrics of constant curvature -1, provided

\X(E)[ < [X(Mg)[.
I am grateful to M. Gromov for suggesting this problem and for interesting

discussions.

2. Preliminaries. We begin with the standard topological description of vector

bundles. Let ITo: P —> B be a right principal 0(m) bundle, m > 1, over a smooth

n-dimensional manifold B.   Let G = O(m) act on Rm on the left in the usual
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way by orthogonal transformations. Define an action of G on P x Rm by g(p, f) =

(pg, g~xf). Then the quotient space E = Px Rm/G is a vector bundle ITb : E —> B

with fiber F diffeomorphic to Rm and structure group G. E is called the vector

bundle associated to P. Conversely, given a vector bundle V over B, we may

assume without loss of generality that its structure group is 0(m). Then there is

a principal 0(m) bundle over B such that associated bundle constructed above is

equivalent to V.

Let ( , )g denote the negative of the killing form of the Lie algebra L(G) of

G; we will also let { , )g denote the corresponding bi-invariant metric on G. Let

( , )b = ds2B denote a smooth Riemannian metric on B. If 6 : TP —> : L(G) is any

connection 1-form on P, we define a metric on P by

(2.1) dsp = Il0-(ds2B) + Q&,

i.e. for vectors x,y G TPP, (x,y)P = (U»x,Ilty)B + (@(x),Q(y))G-

It is well known (cf. [5]) that un: P —> B is a Riemannian submersion, with

totally goedesic fibers, with respect to the metrics ds2 and ds2B. Let H1 denote

the orthogonal complement of the tangent space to the orbits G C P. Then H1

coincides with the horizontal spaces for the submersion Ilo, as well as the horizontal

spaces for the connection 1-form.

Next we consider the product metric

(22) ds2PxF =dsP +dsF

on P x F, where dsF is the metric of constant curvature —a2 on F « Rm; of

course a — 0 if m = 1. Note that dspxF is invariant under the action of G on

P x F, so that dsPxF descends to give a metric ds2E on E. We have the following

commutative diagram:

G GxF

With respect to the metrics defined above, each map II,IIi,IIß is a Riemannian

submersion with totally geodesic fibers (cf. [5] for a proof).

For later purposes, we recall a formula of O'Neill [6] relating the curvature of

the base and total space of Riemannian submersion. Let S —> M be a Riemannian

submersion. Let X, Y be horizontal vector fields on S and let X» — Tl*X, Y* = II* Y.

Then if K denotes sectional curvature, we have

(2.3) KS(X,Y) = KM(X>,Y.) - j^ff,
where [X, Y]v denotes the orthogonal projection of the Lie bracket [X, Y] onto the

vertical subspaces of T(S).

3. Construction of metrics. The metric dsE constructed in §2 does not

have negative sectional curvature. In fact, the O'Neill formulas [6] imply that the
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"mixed" curvature KE(X, V) for X horizontal and V vertical with respect to Tie

are nonnegative.

In order to construct metrics of negative curvature on E, we consider warped

product metrics on P x F. Let g: F —> R be an 0(m)-invariant smooth function,

with g > 0. Thus, g — g(r), where r is the distance function to 0 G F with respect

to the metric dsF. We will specify g more precisely later in this section. Extend g

to a function j:PxF->Rby first projecting on the second factor. We consider

metrics of the form

(3.1) dsPxF = g2 ■ dsP + dsF.

Note that ds2 is also a G-invariant metric and so gives a metric dsE on E. The

projection ILPxF—> F is a Riemannian submersion with respect to these metrics;

the fibers are no longer totally geodesic however. Nevertheless, one may still use

(2.3) to relate the curvatures.

We will need explicit descriptions of the horizontal and vertical spaces of II in

these metrics. Thus, let X(M) denote the space of C°° vector fields on M. Define

maps

L(G) -» X(P),    E -> Ë(p),    and   L(G) -» X(F),    E -* Ë(f),

where

(3.2) E(p) = jt(p-exptE)
t=o

F(/) = |(expiF./)
t=o

It is well known, and easy to verify, that these maps are Lie algebra homomor-

phisms. We note there is a constant C > 0 such that

,,3, i<«<C

for all p G F, for any given smooth metric on P. For any / G F, we may choose

(m - 1) unit vectors e¿ G L(G), depending on /, such that {èi(f)/ip(r)}m~l is

an orthonormal basis oiTjS C TfF, where S is the geodesic r-sphere through /

centered at 0. One calculates that

(3.4) V(r) = - shih ar-

Thus {ei(f)/tp(r), Vr} forms an orthonormal basis of TPF. Note that Ê(f) = 0

for any E £ span{e¿}™_1.

One easily sees that the vertical space Vpj C T^pj^P x F for II is given by

VpJ=   span [Ë(p)-É(f)].
E€L(G)

By the remarks above,, we may choose a basis {e¿} G L(G), depending on /, such

that

Vpj = span[e¿(p) - h(f)] ® span[f5¿(p)],
i=l i=m

where N = dimG. Note that dimVp,/ = N. Let H^f = (TpG)1- C TPP as in §2,

H2 = span^x[aëi(p) + ê»(/)], where

a[P'})     92(PJ) <F(p),F(p)}'

and let H3 = span Vr.
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Then there is an orthogonal splitting, with respect to dsPxF, of the form

(3.5) T{PxF) = V®H1®H2®H3.

The subspace ii1©//2©/?'3 is the horizontal space for the submersion II : PxF —> E

with respect to the metrics dspxF and dsE.

We now begin with the computation of the curvature of dsE. First, by (2.3), the

curvature of (P x F, dspxF) and (E, dsE) are related by

(3.6) KE(X„Y.) = KP*F(X,Y) + | '[^ff
for horizontal vectors X,Y G T(P x F). To estimate the first term, we use the

formula for the sectional curvature of a warped product given in [1]. Write X =

Xp + XF, where Xp (resp. XF) is the orthogonal projection of X onto TP (resp.

TF). If the pair {X, Y} is orthonormal with respect to ds2, then

KP*F(X,Y) = KF(XF,YF) ■ \XF AYF\2 - g[\Yp\2D2g(XF,XF) -2(Xp,Yp)

(3-7) ■ D2g(XF,YF) + \XP\2D2g(XF,YF)]

+ g2[Kp(Xp,YP) - \Vg]2]\Xp AYp\2

Let Be denote the geodesic ball of radius e about 0 G F. The function g will depend

on a parameter e, to be fixed below, and chosen to satisfy the following properties:

(i) g is convex, i.e. D2g > 0 on F and D2g < Cog outside Be.

(ii) |Vg|2/o2 > C. outside B£.

(3.8) (iii) \Vg\2/g2 < C2 outside some compact set of F.

(iv) |Vg|2(x) > C3 • r(x) for x G B£.

(v) g < 1 in BE, g > Í outside BE.

Here Cq,Ci,C2,Cz are constants, also to be specified below. For example, one

may choose g of the form

¡7 = {a1+o2r3/Vsr

and adjust {a¿} to satisfy (3.8). Basically, ai is small and 02,03 large.

Using (3.8) we may estimate (3.7). First, since g is convex, the second term in

(3.7) within the brackets is nonnegative. Since F has curvature — a2, we find

Kp^(X,Y)<~a2\XFAYF\2 + g2[KP(Xp,Yp)-\Vg\2]\XpAYp\2.

We now consider several cases. Suppose / ^ B£. Choose Ci = a2 + sup KP(XP, Yp).

By (3.8) (ii) and (v) we obtain

KP*F(X, Y) < -a2\XF A FF|2 - a2g*\XP A YP\2

< a2\XF A YF\l - a2[XP A YP\l < -a2/4.

Next suppose / G BE. If \XFAYF[2 > \XPAYP\1, then setting b = supKP(Xp, Yp)
we have

KP*F(X, Y) < -a2\XF A YF\2 + \\XP A Yp\l

(3.10)
<

assuming —o2 + bjg2 < 0.

2      b
-a2 + ^

o2
\XF A YF[2 < 1

2      b
a +~2

Q2
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Finally, suppose \XFAYF\2 < \XPAFp|:t and / G B£. We may write Xp = XE +

X2, where Xb G H1 and X2 = a^"~ o¿e¿(p) G (H2)p. It is important to note

that |A2|~ —► 0 as e —* 0. To see this, we have \XF\ < 1, so that | J2aiei{f)\ < 1-
Since, by definition, a = 0(|e(/)|2), the claim follows. Note also that |Xß|^ is

bounded away from zero as / —> 0, since by our assumption \XP[ is bounded away

from zero. These same remarks apply to Yp and we obtain the estimate

KP(XP, Yp) = K*(Xb, Yb) + 0(e).

Now (2.3) applied to the Riemannian submersion IIq: P->B gives

irPiv     v   \ — TCB(Y     V   \       3\[Xb,Yb]   \K   (XB,YB)-K   (Xß.Fß)-- |XßAFß|2 ■

Thus, for the last case, we obtain

(3.11)    KPxF(X,Y)<-a2\XFAYF\2

+ KB<^>-5TOT^|v9|* + 0(£, 02|xPAyp|2.

In order to estimate the second term of (3.6), we use the following Lemma.

LEMMA. Let X, Y be horizontal fields on (P x F, ds2). Then there is a constant

k, depending on dsp and inf g, but not on a, such that

(3.12) \[X,Y]v\l<k-\XAY[l.

PROOF. Since both sides of (3.12) are bilinear, it is sufficient to check (3.12) on

a basis for the horizontal fields. Thus, let X = J] X¿, Y — ̂  Y¿, where Xí,Yí G Hl.

One verifies that

[X3, Y] = [Xi, Y3] = 0,        [Xi,Y2] = [X2,Yi] = 0.

Thus [X,Y] = [Xi,Yi] + [X2,Y2] and

(3.13) \[X,Y]v\l = \[Xi,Yi]V\l + \[X2,Y2y[l.

Applying (2.3) to the submersion IIo : P —> B gives

(3.14) K?(Xi,Yi) = KB(Xi,Yi) - \ '¡%'^ff ;

note that since Xi,Y\, and [Xi,Yi] G TP, the vertical projections for IIo and II

agree. Since Kp and KB are bounded, we have

|[x1,y1]v|2<fc|x1Ar1|2,

and thus

(3.15) \[Xi,Yi]y\i<k\XiAYi\l.

We estimate the second term in (3.13) on a basis of the form Bi = oe¿(p) + e¿(/),

where at a given po G P, we assume (Bi, Bj)(po, f) = 0 if i ^ j. We have

[Bt,Bj] = a2[el(p),eJ(p)] + [*(/), e^/)]

= a2C^ek(p) + C^ek(f),
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where we have used the fact that the maps E —► E(p) and E —► E(f) are Lie

algebra homomorphisms; here C^ are the structure constants of L(G). Thus

|[R   Rlv,2       y> [a2C$(efc(p),efc(m))„ - C|X/),em(/))^]2

m'BA   U = ¿1-\em(p)-em(f)\l-

<C

k,ltm

«4k(p)|i + |e(/)|l
\e(p)-e(f)\l     '

where C is a constant independent of the metrics.   Since |e(p) — e(f)\2^ > L for

some constant L depending only on inf g, we have

|[¿?¿,B#|'<CVlé(p)IÍ + K/)ll]-
On the other hand,

[Bi A Bj[^ = \Bi\^\Bj[^ — (Bi,Bj)^

= \ael(p) + el(f)\i-\aeJ(p) + eJ(f)\l

<C[a4|e(p)|t + |e(/)|t].

Combining the last two estimates with (3.15) gives the result.

We now combine the above estimates to determine KE(X, Y). As before, we

deal with several cases. We assume m > 2 and will discuss the case m = 1 at the

end

(i) f £ BE: Combining (3.9) and (3.12) and substituting into (3.6) gives

(3.16) KE(X,Y) <-a2/4 + k.

(ii) / G B£ and \XF A YF\2 > [Xp A Yp\1: Using (3.10) and (3.12) as above gives

(3.17) KE(X,Y)<\[-a2+b/g2]+k.

Thus, making a choice of g satisfying (3.8), we see that we may choose o suf-

ficiently large so that KE(X, Y) < 0 in the above two cases. In particular, the

curvature of E may be made negative outside a neighborhood of the 0-section of

Ilß : E —> B, regardless of the curvature of B.

(iii) f G Be and \XF A YF\2 < \XP A Yp[i: Using (3.11) and the fact that
\X A Y|~ = 1, we estimate (3.6) as

(3.18)

3\[XB,XB]^2
KE(X,Y)<-a2[XFAYF\2 + k^x^-4Vbaxb2:-w+o{£)

.^[xpayp\1 + \\[xb,YbV\1 + \\x2,y2Y\1

< - a2\XF A YF\2 + [KB(XB, Yb) + 0(e) - |Vo|2]4l*P A Fp|2 + 0(e),

where we have used (3.8)(v).

Now suppose first that KB(XB,YB) < 0, say KB(XB,YB) < -m2 < 0. Choos-

ing £ sufficiently small in (3.18), we obtain

(3.19) KE(X,Y)<-C
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for some constant C > 0. We may combine (3.19) with (3.16) and (3.17) and rescale

the metric if necessary to obtain KE(X, Y) < -.1 for all X, Y G T(E).

Next suppose only KB(XB,YB) < 0. Then by (3.18)

KE(X,Y) < -a2\XF A YF[2 + [0(e) - C3e]\\Xp A Yp\l + 0(e).

We may choose e sufficiently small and C3 sufficiently large in (3.8) (iv) so that

[0(e) — C3£]|XP A Yp^/g2 is sufficiently negative for e ^ 0, to dominate the last

0(e) term. We than obtain KE(X,Y) < 0. Combining this with (3.16) and (3.17)

gives a complete metric on E of nonpositive sectional curvature.

Finally, it is straightforward to verify that the condition D2g < Cog outside Be

for some constant Co implies in both cases KB < 0 and KB < 0 that

KE(X,Y) > -M2

for some constant M. This proves the theorem in the case m > 2.

Suppose finally that m — 1. In the notation above, any horizontal 2-plane for

II: PxR^FhasabasisoftheformX = XB + c-Vr, Y = FB. Since [X,Y]V = 0,

we obtain from (3.7)

KE(X, Y) = KP*R(X, Y) = -0c2|yB|yx + g2[KB(XB, YB) - |Vg|2]|XB A FB|2.

This can be made negative, respectively nonpositive, depending on the curvature

of B, by choosing g to be any convex function. In particular, g satisfying (3.8)

suffices to prove the theorem in this case also.
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