Maximal compact normal subgroups
HTML articles powered by AMS MathViewer
- by M. R. Peyrovian
- Proc. Amer. Math. Soc. 99 (1987), 389-394
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870807-9
- PDF | Request permission
Abstract:
The main concern is the existence of a maximal compact normal subgroup $K$ in a locally compact group $G$, and whether or not $G/K$ is a Lie group. $G$ has a maximal compact subgroup if and only if $G/{G_0}$ has. Maximal compact subgroups of totally disconnected groups are open. If the bounded part of $G$ is compactly generated, then $G$ has a maximal compact normal subgroup $K$ and if $B(G)$ is open, then $G/K$ is Lie. Generalized FC-groups, compactly generated type I IN-groups, and Moore groups share the same properties.References
- R. W. Bagley and T. S. Wu, Maximal compact normal subgroups and pro-Lie groups, Proc. Amer. Math. Soc. 93 (1985), no. 2, 373–376. MR 770558, DOI 10.1090/S0002-9939-1985-0770558-3
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Karl H. Hofmann, John R. Liukkonen, and Michael W. Mislove, Compact extensions of compactly generated nilpotent groups are pro-Lie, Proc. Amer. Math. Soc. 84 (1982), no. 3, 443–448. MR 640250, DOI 10.1090/S0002-9939-1982-0640250-1
- John R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85–108. MR 318390, DOI 10.1090/S0002-9947-1973-0318390-5
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44–55. MR 69830, DOI 10.2307/2007099
- S. P. Wang, Compactness properties of topological groups. II, Duke Math. J. 39 (1972), 243–251. MR 296209
- T. S. Wu and Y. K. Yu, Compactness properties of topological groups, Michigan Math. J. 19 (1972), 299–313. MR 318391
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 389-394
- MSC: Primary 22D05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870807-9
- MathSciNet review: 870807