Uniqueness theorems for subharmonic functions in unbounded domains
HTML articles powered by AMS MathViewer
- by S. J. Gardiner
- Proc. Amer. Math. Soc. 99 (1987), 437-444
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875377-7
- PDF | Request permission
Abstract:
A theorem of Carlson says that a holomorphic function of exponential growth in the half-plane cannot approach zero exponentially along the boundary unless it vanishes identically. This paper presents a generalization of this result for subharmonic functions in a Greenian domain $\Omega$, using the Martin boundary, minimal fine topology and PWB solution to the $h$-Dirichlet problem. Applications of the general theorem to specific choices of $\Omega$, such as the half-space and strip, are presented in later sections.References
- D. H. Armitage, A strong type of regularity for the $\textrm {PWB}$ solution of the Dirichlet problem, Proc. Amer. Math. Soc. 61 (1976), no. 2, 285–289 (1977). MR 427658, DOI 10.1090/S0002-9939-1976-0427658-1
- D. H. Armitage, A Phragmén-Lindelöf theorem for subharmonic functions, Bull. London Math. Soc. 13 (1981), no. 5, 421–428. MR 631101, DOI 10.1112/blms/13.5.421
- D. H. Armitage and T. B. Fugard, Subharmonic functions in strips, J. Math. Anal. Appl. 89 (1982), no. 1, 1–27. MR 672185, DOI 10.1016/0022-247X(82)90087-7
- F. T. Brawn, The Martin boundary of $R^{n}\times ]0,\,1[$, J. London Math. Soc. (2) 5 (1972), 59–66. MR 296323, DOI 10.1112/jlms/s2-5.1.59
- F. T. Brawn, Positive harmonic majorization of subharmonic functions in strips, Proc. London Math. Soc. (3) 27 (1973), 261–289. MR 330482, DOI 10.1112/plms/s3-27.2.261
- Marcel Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, Berlin-New York, 1971. Enlarged edition of a course of lectures delivered in 1966. MR 0281940
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5 S. J. Gardiner, Generalized means of subharmonic functions, Doctoral thesis, Queen’s University of Belfast, 1982.
- S. J. Gardiner, Harmonic majorization of subharmonic functions in unbounded domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 1, 43–54. MR 698836, DOI 10.5186/aasfm.1983.0810
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Ü. Kuran, On the half-spherical means of subharmonic functions of half-spaces, J. London Math. Soc. (2) 2 (1970), 305–317. MR 262531, DOI 10.1112/jlms/s2-2.2.305 L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 437-444
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875377-7
- MathSciNet review: 875377