On zero-diagonal operators and traces
HTML articles powered by AMS MathViewer
- by Peng Fan, Che Kao Fong and Domingo A. Herrero
- Proc. Amer. Math. Soc. 99 (1987), 445-451
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875378-9
- PDF | Request permission
Abstract:
A Hilbert space operator $A$ is called zero-diagonal if there exists an orthonormal basis $\phi = \{ {e_j}\} _{j = 1}^\infty$ such that $\left \langle {A{e_j},{e_j}} \right \rangle = 0$ for all $j$. It is known that $T$ is the norm limit of a sequence $\{ {A_k}\}$ of zero-diagonal operators iff $0 \in {W_e}(T)$, the essential numerical range of $T$. Our first result says that if $0 \in {W_e}(T)$ and $\mathcal {J}$ is an ideal of compact operators strictly larger than the trace class, then the sequence $\{ {A_k}\}$ can be chosen so that $|T - {A_k}{|_\mathcal {J}} \to 0$ ($\mathcal {J}$ cannot be replaced by the trace class!). If $A$ is zero-diagonal, then the series $\sum _{j = 1}^\infty \left \langle {A{e_j},{e_j}} \right \rangle$ converges to a value (zero) that can be called "the trace of $A$ with respect to the basis $\phi$". Our second result provides, for each operator $T$, the structure of the set of all possible "traces" of $T$ (in the above sense). In particular, this set is always either the whole complex plane, a straight line, a singleton, or the empty set.References
- J. H. Anderson, Derivations, commutators and the essential numerical range, Thesis, Indiana University, 1971.
- Asher Ben-Artzi, Traces of compact operators, Integral Equations Operator Theory 7 (1984), no. 3, 310–324. MR 756762, DOI 10.1007/BF01208380
- Peng Fan, On the diagonal of an operator, Trans. Amer. Math. Soc. 283 (1984), no. 1, 239–251. MR 735419, DOI 10.1090/S0002-9947-1984-0735419-8
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- Paul R. Halmos, Finite-dimensional vector spaces, The University Series in Undergraduate Mathematics, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958. 2nd ed. MR 0089819
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Domingo A. Herrero, An essay on quasitriangularity, Special classes of linear operators and other topics (Bucharest, 1986) Oper. Theory Adv. Appl., vol. 28, Birkhäuser, Basel, 1988, pp. 125–154. MR 942918
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112
- Quentin F. Stout, Schur products of operators and the essential numerical range, Trans. Amer. Math. Soc. 264 (1981), no. 1, 39–47. MR 597865, DOI 10.1090/S0002-9947-1981-0597865-2
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 445-451
- MSC: Primary 47A12; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875378-9
- MathSciNet review: 875378