A note on separable Banach spaces with nonseparable dual
HTML articles powered by AMS MathViewer
- by James N. Hagler
- Proc. Amer. Math. Soc. 99 (1987), 452-454
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875379-0
- PDF | Request permission
Abstract:
If $X$ is a separable Banach space with ${X^*}$ nonseparable, then $X$ contains a subspace ${X_0}$ with a Schauder basis with $X_0^*$ nonseparable.References
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9 M. M. Day, Normed linear spaces, 2nd printing, Springer-Verlag, New York, 1962.
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. MR 374381, DOI 10.1090/S0002-9947-1975-0374381-1
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 452-454
- MSC: Primary 46B15; Secondary 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875379-0
- MathSciNet review: 875379