GENERALIZATIONS OF PALEY-WIENER'S THEOREM FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE
SABUROU SAITOH

ABSTRACT. An interpretation and generalizations of the Paley-Wiener theorem for entire functions of exponential type are given in connection with the Fourier-Laplace transform.

1. Introduction. The important generalization of the Paley-Wiener theorem [6] for entire functions of exponential type was given by Plancherel and Pólya [7] (see Fuks [3] and Ronkin [8]). A further extension of Plancherel and Pólya was given by Martin [5] in the case of functions f analytic on the octant $\text{Im} \ z_k > 0$ ($k = 1, 2, \ldots, n$). In this paper, we discuss Martin's theorem in a general situation following the idea of the general theory [9, 10, 11] of integral transforms.

The author wishes to thank Professor T. G. Genchev for pleasant and fruitful discussions in Bulgaria.

2. Fourier-Laplace transform and a fundamental problem. We set

$$z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n,$$
$$z_j = x_j + iy_j \quad (x_j, y_j \in \mathbb{R}),$$
$$x = (x_1, x_2, \ldots, x_n), \quad y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n,$$
$$dx = dx_1 dx_2 \cdots dx_n, \quad dy = dy_1 dy_2 \cdots dy_n,$$
$$t = (t_1, t_2, \ldots, t_n) \in \mathbb{R}^n, \quad (z, t) = \sum_{j=1}^{n} z_j t_j.$$

For some domains $D \subset \mathbb{R}^n$, $\Omega \subset \mathbb{C}^n$, and for functions F of $L_2(D, dt)$, we consider the Fourier-Laplace transform

$$f(z) = \left(\frac{1}{2\pi}\right)^{n/2} \int_D F(t) e^{-i(z, t)} dt.$$ \hfill (2.1)

When we consider the images $f(z)$ of $L_2(D, dt)$ functions F by (2.1), we should consider the following expression:

$$K(z, \bar{w}; \Omega, D) = \left(\frac{1}{2\pi}\right)^{n} \int_D e^{-i(z, t)} e^{i(\bar{w}, t)} dt.$$ \hfill (2.2)

Received by the editors December 18, 1985.
1980 Mathematics Subject Classification (1985 Revision). Primary 32A07, 42B10, 44A10; Secondary 30C40.

Key words and phrases. Paley-Wiener's theorem, entire function of exponential type, Fourier-Laplace transform, general theory of integral transforms, reproducing kernel, tube domain, convex domain.

Research partially supported by Grant-in-Aid for Scientific Research 60540086.
See the general theory [9, 10, 11] of integral transforms for this idea. Thus, we first assume that

\[(2.3) \int_D e^{2(y,t)} \, dt < \infty \quad \text{on } \Omega.\]

Note that (2.2) exists on $\Omega \times \overline{\Omega}$ if and only if (2.3) is valid and, further, the existence domain of $K(z,\overline{w};\Omega, D)$ is independent of x. Hence, we can naturally consider Ω as a tube domain of the form $T_G = R^n + iG \subset C^n$. Moreover, we set

\[(2.4) \hat{G}_D = \left\{ y \in R^n, \int_D e^{2(y,t)} \, dt < \infty \right\}\]

and we can consider the maximal domain T_{G_D} as Ω. Of course, \hat{G}_D is a convex domain on R^n. We thus consider the function $K(z,\overline{w};T_{G_D}, D)$ on $T_{G_D} \times T_{\overline{G_D}}$. This function is a positive matrix on T_{G_D} in the sense of E. M. Moore and so there exists a uniquely determined Hilbert space $H_K(T_{G_D}, D)$ composed of functions on T_{G_D} admitting the reproducing kernel $K(z,\overline{w};T_{G_D}, D)$ (see Aronszajn [1, 2]). This space $H_K(T_{G_D}, D)$ is composed of holomorphic functions $f(z)$ on T_{G_D} which are expressible in the form

\[(2.5) f(z) = \left(\frac{1}{2\pi} \right)^{n/2} \int_D F(t)e^{-i(z,t)} \, dt\]

for $L_2(D,dt)$ functions F and with the norm

\[(2.6) \|f\|^2_{H_K(T_{G_D}, D)} = \int_D |F(t)|^2 \, dt.\]

[9, 10, 11]. On the other hand, from Parseval’s equation we have

\[(2.7) \int_{R^n} |f(x)|^2 \, dx = \int_D |F(t)|^2 \, dt.\]

Hence,

\[(2.8) \|f\|^2_{H_K(T_{G_D}, D)} = \int_{R^n} |f(x)|^2 \, dx.\]

We thus see that the functions $f(z)$ of $H_K(T_{G_D}, D)$ are analytic on T_{G_D}, $L_2(R^n, dx)$-integrable, and the norms of f in $H_K(T_{G_D}, D)$ are given by (2.8). In this situation, we can regard that when D is a bounded interval in R and when D is a bounded convex domain in R^n, the theorems of Paley-Wiener [6] and Plancherel-Pólya [7] give characterizations of the members $f(z)$ of $H_K(T_{G_D}, D)$ in terms of the growth of $f(z)$ at infinity, respectively. We thus, in general, propose a fundamental problem in our situation.

A fundamental problem. In the above situation, give a characterization of the members of $H_K(T_{G_D}, D)$ in terms of the domain D.

In order to give a reasonable solution for this problem, we will assume that D is a convex domain and ∂D is a smooth hypersurface on R^n. When $D = \prod_{j=1}^n (-\infty, a)$ ($a > 0$), Martin [5] discussed the growth of the functions of $H_K(T_{G_D}, D)$ at infinity, but he did not give a complete answer for the above problem in his situation.
3. On ranges. Let O be the origin of coordinates in the t-space R^n and let the hyperplanes $\{\Gamma\}$ pass through it and lie parallel to the limiting positions of the tangent hyperplanes of ∂D. We consider the convex cone with vertex at the origin enveloped by these hyperplanes. The nappe of this cone lying on the same side of the hyperplanes $\{\Gamma\}$ as the domain D is called the asymptotic cone of TD. As the asymptotic cone of a bounded domain D, we take the set $\{0\}$; that is, the origin. When V is the asymptotic cone of TD, we will say that the domain TD is of type V.

We consider the conjugate cone V^* of V; that is,

$$V^* = \left\{ (t_1^*, t_2^*, \ldots, t_n^*) \in R^n; \sum_{j=1}^{n} t_j^* t_j > 0 \text{ for all } t \in V, t \neq 0 \right\}.$$

When D contains a whole line, V^* does not contain any n-dimensional sphere. Further then, since $\hat{G}_D = \{0\}$, in the sequel we assume that D does not contain any whole line.

We will consider V^* in the y-space R^n. Then, note that

$$e^{(y,t)} \text{ is bounded on } t \in D$$

if and only if

$$-y \in V^* \text{ or } y \in -V^*.$$

We define the support function of the convex set \overline{D} by

$$H_D(y) = \max_{t \in \overline{D}} (y,t).$$

Then we obtain

Theorem 3.1. $\hat{G}_D = -V^*$.

Proof. For any fixed point $y^{(0)} \in -V^*$, we set

$$(y^{(0)}, t) = |y^{(0)}| |t| \cos \theta_0(t) < 0 \quad \text{on } V,$$

where, of course, $\theta_0(t)$ ($|\theta_0(t)| \leq \pi$) is the angle between the two vectors $y^{(0)}$ and t in the same space R^n. Hence, there exists Θ such that

$$|\theta_0(t)| \geq \Theta > \pi/2 \quad \text{on } V.$$

Hence, there exist $\varepsilon > 0$ and $M > 0$ such that

$$|\theta_0(t)| \geq \Theta - \varepsilon > \pi/2 \quad \text{on } D \cap \{|t| \geq M\}.$$

Then, from the identity

$$\int_{|x| < N} f(|x|) \, dx = \frac{2\sqrt{\pi^n}}{\Gamma(n/2)} \int_0^N x^{n-1} f(x) \, dx$$
[4, p. 623], we have

\[
\int_D e^{2(y(0),t)} dt \leq \int_{D \cap \{|t| \leq M\}} e^{2(y(0),t)} dt + \int_{D \cap \{|t| \geq M\}} e^{2|y(0)| |t| \cos(\Theta-\epsilon)} dt
\]

\[
\leq \int_{D \cap \{|t| \leq M\}} e^{2(y(0),t)} dt + \int_{\mathbb{R}^n} e^{2|y(0)| |t| \cos(\Theta-\epsilon)} dt
\]

(3.6)

\[
\leq \int_{D \cap \{|t| \leq M\}} e^{2(y(0),t)} dt + \lim_{N \to \infty} \frac{2\sqrt{\pi^n}}{\Gamma(n/2)} \int_0^N t^{n-1} e^{t|2y(0)| \cos(\Theta-\epsilon)} dt < \infty.
\]

Hence, we have \(\hat{G}_D \supset -V^* \).

On the other hand, for any point \(y(0) \in (-V^*)^c \), the complement, by the definition of \(V^* \) there exists a point \(t(0) \in V \) such that \((y(0),t(0)) > 0 \). Then, there exists a narrow nondegenerate (i.e. contains an \(n \)-dimensional sphere) convex cone \(\Gamma(t(0)) \) with vertex 0 such that

\[
(y(0),t) > 0 \quad \text{on} \quad \Gamma(t(0))
\]

(3.7)

and

\[
D \supset \Gamma(t(0)) \cap \{|t| \geq M\} \quad \text{for some} \quad M > 0.
\]

Then

\[
\int_D e^{2(y(0),t)} dt \geq \int_{\Gamma(t(0)) \cap \{|t| \geq M\}} e^{2(y(0),t)} dt
\]

(3.9)

\[
\geq \int_{\Gamma(t(0)) \cap \{|t| \geq M\}} dt = \infty.
\]

Hence, \(\hat{G}_D \subset -V^* \), and we have the desired result.

In Theorem 3.1, we will give a characterization of the functions \(f \in H_K(T_{-V^*}, D) \).

4. Necessity condition. We set

\[
y = \rho \lambda \quad (y_j = \rho \lambda_j, \quad \rho > 0) \quad \text{and} \quad |\lambda| = 1.
\]

From the identity (2.5), we have, by Parseval's equation,

\[
\int_{\mathbb{R}^n} |f(x + i\rho \lambda)|^2 dx = \int_D |F(t)|^2 e^{2\rho H(\lambda,t)} dt
\]

(4.1)

\[
\leq e^{2\rho H_D(\lambda)} \int_D |F(t)|^2 dt.
\]

Hence, for \(\rho \lambda \in -V^* \) we have

\[
\frac{1}{2} \lim_{\rho \to -\infty} \frac{1}{\rho} \log \int_{\mathbb{R}^n} |f(x + i\rho \lambda)|^2 dx \leq H_D(\lambda).
\]

(4.2)

Further, when \(f(t) \neq 0 \) a.e. on \(D \) we can prove that the actual limit exists and that it is equal to \(H_D(\lambda) \) as in Martin [5].
5. Sufficiency condition. In our situation, we will give a complete answer for our fundamental problem:

Theorem 5.1. \(f(z) \) belongs to \(H_K(T_-V^*, D) \) if and only if

\[f(z) \text{ is holomorphic on } T_-V^* \text{ and } L_2(R^n, dx) \text{-integrable, and further, for any } y \in -V^*, \text{ the integral} \]

\[\int_{R^n} |f(x + iy)|^2 \, dx \]

exists,

and

\[\frac{1}{2} \lim_{\rho \to \infty} \frac{1}{\rho} \log \int_{R^n} |f(x + i\rho \lambda)|^2 \, dx \leq H_D(\lambda). \]

Proof. It is sufficient to prove that any function \(f(z) \) satisfying (5.1) and (5.2) is an image by the Fourier-Laplace transform (2.1) of an \(L_2(D, dt) \) function. Since \(f(x) \in L_2(R^n, dx) \), we can define the \(L_2(R^n, dt) \) function \(\tilde{F}(t) \) by

\[(5.3) \quad \tilde{F}(t) = \lim_{N \to \infty} \left(\frac{1}{2\pi} \right)^{n/2} \int_{|x_j| < N} f(x_j) e^{ix_j t} \, dx. \]

Of course,

\[(5.4) \quad f(x) = \lim_{N \to \infty} \left(\frac{1}{2\pi} \right)^{n/2} \int_{|t_j| < N} \tilde{F}(t_j) e^{-ix_j t} \, dt, \]

in the framework of \(L_2 \) spaces.

We first assume that in addition \(f(x) \in L_1(R^n, dx) \). Then, (5.3) exists in the ordinary sense

\[\tilde{F}(t) = \left(\frac{1}{2\pi} \right)^{n/2} \int_{R^n} f(x) e^{ix \cdot t} \, dx. \]

By condition (5.2), since the integrals \(\int_{R^n} |f(x + iy)|^2 \, dx \) exist for all \(y \in -V^* \), the integrals

\[(5.5) \quad \left(\frac{1}{2\pi} \right)^{n/2} \int_{R^n} f(x + iy) e^{ix + iy \cdot t} \, dx \]

also exist for all \(y \in -V^* \). Moreover, by using the Cauchy integral theorem, we see that the integrals (5.5) are independent of \(y \in -V^* \). Hence, we set

\[\tilde{F}(t) = \left(\frac{1}{2\pi} \right)^{n/2} \int_{R^n} f(x + iy) e^{ix + iy \cdot t} \, dx. \]

(See [12, pp. 98–101] for this argument.) Then, we see immediately that \(\tilde{F}(t) \) is continuous on \(R^n \) and \(\tilde{F}(t) = \hat{F}(t) \) on \(R^n \). Hence, by Parseval’s equation, we have

\[\int_{R^n} |f(x + iy)|^2 \, dx = \int_{R^n} |\tilde{F}(t)|^2 e^{2iy \cdot t} \, dt. \]
Hence, for \(y = \rho \lambda \in -V^* \), we have

\[
H_D(\lambda) \geq \frac{1}{2} \lim_{\rho \to \infty} \frac{1}{\rho} \log \int_{\mathbb{R}^n} |f(x + i\rho \lambda)|^2 \, dx
\]

(5.6)

\[
= \frac{1}{2} \lim_{\rho \to \infty} \frac{1}{\rho} \log \int_{\mathbb{R}^n} |\tilde{F}(t)|^2 e^{2\rho(H(\lambda,t))} \, dt.
\]

For any \(t_0 \in \overline{D}^c \), we will show that \(\tilde{F}(t_0) = 0 \). Since \(\tilde{F}(t) \) is continuous on \(\mathbb{R}^n \), when \(\tilde{F}(t_0) \neq 0 \), for some closed sphere \(S(t_0) \) with the center \(t_0 \ (\subset \overline{D}^c) \),

\[
|\tilde{F}(t)| \geq m > 0 \quad \text{on } S(t_0)
\]

(5.7)

Further then, since

\[
(\lambda, t) > H_D(\lambda) \quad \text{on } S(t_0),
\]

there exists \(\varepsilon > 0 \) such that

\[
(\lambda, t) \geq H_D(\lambda) + \varepsilon \quad \text{on } S(t_0).
\]

Hence, from (5.6) we have

\[
H_D(\lambda) \geq \frac{1}{2} \lim_{\rho \to \infty} \frac{1}{\rho} \log \left(\int_{S(t_0)} |\tilde{F}(t)|^2 e^{2\rho(H(\lambda,t))} \, dt \right)
\]

\[
\geq \frac{1}{2} \lim_{\rho \to \infty} \frac{1}{\rho} \log \left(m^2 e^{2\rho(H_D(\lambda)+\varepsilon)} \right) \int_{S(t_0)} \, dt
\]

\[
= H_D(\lambda) + \varepsilon,
\]

which implies a contradiction. Hence, the support of \(\tilde{F} \) is contained in \(\overline{D} \). Further, since (2.3) is valid for any \(y \in -V^* \), in (5.4) we obtain the desired expression

\[
f(z) = \left(\frac{1}{2\pi} \right)^n \int_D \tilde{F}(t) e^{-iz(t,t)} \, dt.
\]

When \(f(x) \) is in \(L_2(\mathbb{R}^n, dx) \) but not necessarily in \(L_1(\mathbb{R}^n, dx) \) we set

\[
f_\varepsilon(z) = f(z) \prod_{j=1}^{n} \frac{\sin \varepsilon z_j}{\varepsilon z_j}.
\]

Then we have \(f_\varepsilon \in L_1(\mathbb{R}^n, dx) \). Hence, the Fourier transform \(\tilde{F}_\varepsilon(t) \) of \(f_\varepsilon(z) \) vanishes outside the convex set \(\overline{D} \). From the relation

\[
\tilde{F}_\varepsilon(t) = \left(\frac{1}{2\varepsilon} \right)^n \int_{t_1-\varepsilon}^{t_1+\varepsilon} \cdots \int_{t_n-\varepsilon}^{t_n+\varepsilon} \tilde{F}(t) \, dt
\]

we obtain

\[
\lim_{\varepsilon \to 0} \tilde{F}_\varepsilon(t) = \tilde{F}(t)
\]

for almost all \(t \in \mathbb{R}^n \). Hence, the support of \(\tilde{F} \) is contained in \(\overline{D} \). We thus complete the proof of the theorem.

ADDED IN PROOF. In Theorem 5.1, \(f(x) \) are also considered as the boundary values such that

\[
\lim_{y \to 0} f(x + iy) = f(x)
\]

in the sense of the \(L_2 \) norm (see [12, Chapter III]).
GENERALIZATIONS OF PALEY-WIENER’S THEOREM

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING, GUNMA UNIVERSITY, KIRYU, 376, JAPAN

Current address: Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260