UNBOUNDED COMPOSITION OPERATORS ON $H^2(B_2)$

J. A. CIMA AND W. R. WOGEN

ABSTRACT. Examples are given of holomorphic self-maps of the unit ball on \mathbb{C}^2 which induce unbounded composition operators on the Hardy space H^2. In particular, an example is given which is one-to-one on the closed ball. Also, a valence condition on the boundary of this ball is given which is sufficient for unboundedness of the induced composition operator.

1. Introduction. Let B_n be the open unit ball in \mathbb{C}^n and let $H^2 = H^2(B_n)$ be the Hardy space on B_n. If ϕ is a holomorphic mapping of B_n into B_n, then the composition operator $C_{\phi} : f \to f \circ \phi$ maps holomorphic functions on B_n into holomorphic functions. If $n = 1$, it is well known that C_{ϕ} is a bounded operator on H^2 (see [5], e.g.). For $n > 1$, there are many examples (see [1, 2]) which show that C_{ϕ} need not be bounded. These examples exhibit a "collapsing" property on the boundary ∂B_n of B_n. For instance ϕ may map an arc on ∂B_n to a point on ∂B_n. The main result of this note is the construction (Theorem 2) of a mapping $\phi : B_2 \to B_2$ which is holomorphic and one-to-one on B_2 and such that C_{ϕ} is unbounded on H^2. ϕ is in fact a polynomial mapping.

B. MacCluer and J. Shapiro show in [4, Theorem 6.4] that if $\phi : B_n \to B_n$ is one-to-one and if the derivative of ϕ^{-1} is bounded on $\phi(B_n)$, then C_{ϕ} is bounded on H^2 (see also [1, Theorem 2]). Our example shows that even for one-to-one mappings, some additional hypothesis on ϕ must be imposed to guarantee that C_{ϕ} is bounded. Example 4 is also related to the above theorem. In Theorem 1 we give a valence condition on ϕ which is sufficient for unboundedness of C_{ϕ}. All of our results rely on the following Carleson measure criterion for boundedness of C_{ϕ}.

THEOREM [3]. Suppose that $\phi : B \to B$ is holomorphic and that $\mu = \sigma(\phi^*)^{-1}$. Then C_{ϕ} is bounded on H^2 if and only if there is a $C > 0$ so that $\mu(S(\zeta, t)) \leq Ct^2$ for all $\zeta \in \partial B$ and $t > 0$. In this case we say that μ is a σ-Carleson measure.

W. Rudin's book [6] will be used as a standard reference. We will restrict our attention to $B_2 = B$. For $\phi : B \to B$, write $\phi = (\phi_1, \phi_2)$. Let σ denote surface measure on ∂B. If $\zeta \in \partial B$, set $\phi^*(\zeta) = \lim_{r \to 1} \phi(r\zeta)$; so $\phi^* : \partial B \to \overline{B}$. Further define $S(\zeta, t) = \{z \in \overline{B} : |1 - \langle z, \zeta \rangle| < t\}$. Here $\langle \cdot, \cdot \rangle$ denotes the usual complex inner product in \mathbb{C}^2, and $t > 0$. Let $Q(\zeta, t) = S(\zeta, t) \cap \partial B$.

2. A criterion for unboundedness. In this section we prove the following.

THEOREM 1. Suppose that $\phi : B \to B$ is holomorphic on B and that ϕ' is uniformly bounded on B. If $\sup\{\text{card}(\phi^*)^{-1}(\xi) : \xi \in \partial B\} = \infty$, then C_{ϕ} is unbounded on H^2.______

Received by the editors November 27, 1985 and, in revised form, January 30, 1986.
Key words and phrases. Hardy spaces, composition operators, holomorphic mappings.

©1987 American Mathematical Society
0002-9939/87 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The proof of this theorem depends on the following lemma. We assume the smoothness hypothesis of Theorem 1.

Lemma 1. Suppose that \(\phi(0) = 0 \). Then there exist positive numbers \(A \) and \(\delta \) which satisfy the following. If \(\zeta, \xi \in \partial B \) and \(\phi^*(\zeta) = \xi \), then \(\phi^*(Q(\zeta, t)) \subset S(\zeta, At) \) for all \(0 < t < \delta \).

Proof. \(\phi \) has a continuous extension to \(\overline{B} \), which we can also denote by \(\phi \). In fact \(\phi \) is Lipschitz on \(\overline{B} \). Thus there is a \(D > 0 \) so that if \(z, w \in \overline{B} \) and \(|z - w| < t \), then \(|\phi(z) - \phi(w)| < Dt \). Let \(e = (1,0) \). Consider the case that \(\zeta = \xi = e \).

Set
\[
L = \liminf_{z \to e} \frac{1 - |\phi(z)|^2}{1 - |z|^2}.
\]

Then by the Julia-Carathéodory theory [6, pp. 174–181], \(L = \lim_{r \to 1} D_1 \phi_1(re) \).

Note that \(L \geq 1 \) by the Schwarz Lemma. For \(0 < c < 1 \), consider the ellipsoids
\[
E_c = \left\{ z \in B : \frac{|z_1 - (1-c)|^2}{c^2} + \frac{|z_2|^2}{c} < 1 \right\}.
\]

By [6, Theorem 8.54], we have \(\phi(E_c) \subset E_{Lc} \) if \(c < 1/L \). Also note that \(E_c \subset S(e,2c) \).

Now if \(z \in Q(e,t) \), we have \(|1 - z_1| < t \), so that \(|z_1| > 1 - t \). Hence \(|z_2|^2 = |1 - z_1|^2 < 2t - t^2 \). If follows that \((1 - 2t, z_2) \in E_{2t} \). Thus \((1 - 2t, z_2) \in S(e,4t) \), so that \(\phi(1 - 2t, z_2) \in S(e,4tL) \).

Set \(\delta = 1/2L \). Suppose that \(0 < t < \delta \), and \(z \in Q(e,t) \). Then \(|z - (1 - 2t, z_2)| \leq |1 - z_1| + 2t < 3t \), so that \(|\phi(z) - \phi(1 - 2t, z_2)| < D(3t) \). Thus \(|1 - \phi_1(z)| < 4tL + 3tD \), and the lemma holds with \(A = 4L + 3D \).

For the general case choose unitaries \(U \) and \(V : C^2 \to C^2 \) with \(Ue = \zeta \) and \(V^1(1,0) = e \). Apply the first part of the proof to the map \(\lambda = V \circ \phi \circ U \). There are positive numbers \(A \) and \(\delta \) so that \(\lambda(Q(e,t)) \subset S(e,At) \) for \(0 < t < \delta \). Since \(U(Q(e,t)) = Q(\zeta, t) \) and \(V^{-1}(S(e,At)) = S(\zeta, At) \), we have \(\phi(Q(\zeta, t)) \subset S(\zeta, At) \).

Finally, note that \(A \) depends on the Lipschitz constant \(D \) and on \(L \). But \(L \leq \sup\{||\phi'(z)|| : z \in B\} \), so that both \(\delta \) and \(A \) can be chosen independent of \(\zeta \) and \(\xi \).

Proof of Theorem 1. Since an automorphism of \(B \) induces a bounded composition operator, we may assume that \(\phi(0) = 0 \). Fix a positive integer \(n \). Suppose that \(\xi \in \partial B \) and \(\text{card}(\phi^*|^{-1}(\xi)) \geq n \). Choose \(\zeta_1, \zeta_2, \ldots, \zeta_n \in \partial B \) so that \(\phi^*(\zeta_k) = \xi, 1 \leq k \leq n \). Choose \(A \) and \(\delta \) as in Lemma 1. Then choose \(t_0 \) with \(0 < t_0 \leq \delta \) and so that if \(0 < t < t_0 \), the sets \(Q(\zeta_1, t), \ldots, Q(\zeta_n, t) \) are pairwise disjoint. Thus
\[
\sigma(\phi^*|^{-1}(S(\zeta, At))) \geq \sigma \left(\bigcup_{k=1}^{n} Q(\zeta_k, t) \right) \approx nt^2.
\]

Since \(n \) is arbitrary, it is clear that \(\sigma(\phi^*|^{-1}) \) is not a Carleson measure, and the theorem is proven.

3. Examples.

Example 1. This example is a slight variant of an example shown to us by J. P. Rosay. Let
\[
\psi(z_1, z_2) = \frac{1}{2}(1 + \overline{z_1}^2 + \overline{z_2}^2, z_2(1 - z_1^2 - \overline{z_2}^2)).
\]
If \(z \in \overline{B} \), then

\[
|\psi(z)|^2 = \frac{1}{4} (1 + 2 \text{Re}(z_1^2 + z_2^2) + |z_1|^2)^2 + \frac{1}{4} (1 + 2 \text{Re}(z_1^2 + z_2^2) + |z_1|^2)^2 \\
\leq \frac{1}{4} (2 + 2|z_1^2 + z_2^2|) \leq 1.
\]

Further, \(|\psi(z)| = 1\) if and only if \(z_1^2 + z_2^2 = 1 \), in which case \(\psi(z) = e \). Thus \((\psi^*)^{-1}(e)\) is the unit circle \(C \) in the \(\text{Re } z_1, \text{Re } z_2 \) plane. Hence \(C_\psi \) is unbounded on \(H^2 \), by Theorem 1. It can be shown directly that \(\sigma(\psi^*)^{-1}(S(e,t)) \approx t^{3/2} \). We observe some additional properties of \(\psi \). Consider the complex Jacobian \(J_\psi \) on \(\overline{B} \).

It is easy to check that \(J_\psi \) vanishes only on \(C \) and on the complex line \(z_1 = 0 \). Also if \(z \) and \(w \) are in \(\overline{B} - C \) and \(\psi(z) = \psi(w) \), we have \(z_1 = \pm w_1 \) and \(z_2 = w_2 \). Thus \(\psi \) is a two-to-one map on \(\overline{B} - C \). \(\psi \) is one-to-one on \(\{z \in \overline{B}: \text{Re } z_1 > 0\} \).

EXAMPLE 2. Let \(\rho(z_1, z_2) = (1 - \sqrt{\frac{1}{2}(1 - z_1^2 - z_2^2)}, \frac{1}{2} z_2 (1 - z_1^2 - z_2^2)) \). Here \(\sqrt{\cdot} \) denotes the principal branch of the square root. Then \(\rho \) shares may properties with \(\psi \). An application of the Schwarz Lemma shows that \(|\rho_1(z)| \leq |\psi_1(z)| \) for \(z \in \overline{B} \). It follows that \(\rho(\overline{B} - C) \subset \overline{B} \). Also \(\rho(c) = \{e\} \), and \(\rho \) is two-to-one on \(\overline{B} - C \). \(\rho \) is continuous on \(\overline{B} \), but \(\rho' \) is not bounded on \(\overline{B} \).

We will show that \(C_\rho \) is compact on \(H^2 \). First we show that \(\rho(B) \) is contained in a Koranyi approach region \(D_{\alpha}(e) = \{z \in B: |1 - z_1| < (\alpha/2)(1 - |z|^2)\} \).

Let \(E_1 = \{z \in \overline{B}: |1 - z_1^2 - z_2^2| < \frac{1}{4}\} \) and \(E_2 = \overline{B} - E_1 \). Then sup\(|\rho(z)|: z \in E_2\} < 1\), so we have \(\rho(E_2) \subset D_{\alpha_0}(e) \) for some \(\alpha_0 > 0 \). If \(z \in E_1 \), then

\[
|\rho(z)|^2 \leq 1 - 2 \text{Re} \frac{1}{2}(1 - z_1^2 - z_2^2) + \frac{1}{2}|1 - z_1^2 - z_2^2| + \frac{1}{2}|1 - z_1^2 - z_2^2|^2.
\]

Thus

\[
1 - |\rho(z)|^2 \geq 2 \text{Re} \frac{1}{2}(1 - z_1^2 - z_2^2) - |1 - z_1^2 - z_2^2|.
\]

But \(\text{Re}(1 - z_1^2 - z_2^2) \geq 0 \), so

\[
\text{Re} \frac{1}{\sqrt{2}}|1 - z_1^2 - z_2^2|^{1/2} \geq \frac{1}{\sqrt{2}}|1 - z_1^2 - z_2^2|^{1/2}.
\]

Hence

\[
1 - |\rho(z)|^2 \geq |1 - z_1^2 - z_2^2|^{1/2}(1 - |1 - z_1^2 - z_2^2|^{1/2}) \geq \frac{1}{2}|1 - z_1^2 - z_2^2|^{1/2} = \frac{1}{2}|1 - \rho_1(z)|.
\]

So \(\rho(B) \subset D_\alpha(e) \), where \(\alpha = \max(\alpha_0, 4) \).

By the computation mentioned in Example 1, we have

\[
\sigma(\rho^*)^{-1}(S(e,t)) = \sigma(\psi^*)^{-1}(S(e,2t^2)) \approx t^3.
\]

By \([3, \text{Lemma } 2.1, \text{(ii)}]\), \(C_\rho \) is compact.

We now construct a biholomorphism \(\Phi \) of \(B \) into \(B \) which is a homeomorphism of \(\overline{B} \) onto \(\Phi(\overline{B}) \) and such that \(C_\Phi \) is unbounded on \(H^2 \). Let \(\psi \) be as in Example 1 and let

\[
\phi(z) = \frac{1}{25}((18 + 9z_1 - 2z_1^2 + 2z_2, 9z_2 - 4z_1z_2).
\]

We will consider the map \(\Phi = \psi \circ \phi \). Our first step is to study \(\phi \).
LEMMA 2. Let \(f(z) = 18 + 9z - 2z^2 \). If \(|z| \leq r < 1 \) and \(z \neq r \), then \(|f(z)| < f(r) \).

PROOF. Let \(z = re^{i\theta} = x + iy, 0 < r < 1 \). Then

\[
|f(z)|^2 = 18 + 9^2 r^2 + 2^2 r^4 + 2 \cdot 9 \cdot 18r^2 - 2 \cdot 2 \cdot 18(x^2 - y^2) - 2 \cdot 2 \cdot 9r^2 x
\]

\[
= 468 + 153r^2 + 4r^4 - 144(1 - x)^2 + 36x(1 - r^2)
\]

\[
\leq 468 + 153r^2 + 4r^4 - 144(1 - x^2)^2 + 36(x(1 - r^2)) = f(r)^2,
\]

with equality if and only if \(x = r \).

NOTE. \(g(z) = f(z)/25 \) is the second Taylor polynomial at \(z = 1 \) of the automorphism \(A(z) = (z + 2/3)(1 + 2z/3)^{-1} \) of the unit disc \(\Delta \). Using Lemma 2, one can see that \(g(\Delta) \subset \Delta \). Also \(g \) is univalent on \(\Delta \), \(g(1) = 1 \), and the range of \(g \) has second order contact at 1 with the unit circle.

LEMMA 3. \(\phi \) is one-to-one on \(\overline{B} \).

PROOF. Suppose that \(\phi(z) = \phi(w) \) with \(z, w \in \overline{B} \). Then \(9z_1 - 2z_1^2 + 2z_1^2 = 9w_1 - 2w_1^2 + 2w_1^2 \), so that \((z_1 - w_1)(9 - 2z_1 - 2w_1) = 2(w_2 - z_2)(w_2 + z_2) \). Hence \(|z_1 - w_1| \leq \frac{3}{5}|w_2 - z_2| \).

Also \(9z_2 - 4z_1z_2 = 9w_2 - 4w_1w_2 \) so that \((9 - 4z_1)(z_2 - w_2) = 4w_2(z_1 - w_1) \).

Thus \(|z_2 - w_2| \leq \frac{4}{5}|z_1 - w_1| \), and \(z = w \).

LEMMA 4. \(\phi(e) = e \), and \(\phi(\overline{B} - \{e\}) \subset B \).

PROOF. For \(z \in \partial B \), write \(z_1 = re^{i\theta} = x + iy \). Then \(|z_2| = \sqrt{1 - r^2} \). Lemma 2 is used in the following inequality.

\[
25|\phi(z)|^2 \leq (|18 + 9z_1 - 2z_1^2| + 2|z_2|^2)^2 + |z_2|^2|9 - 4z_1|^2
\]

\[
\leq |f(z_2)|^2 + 4f(r)(1 - r^2) + 4(1 - r^2)^2 + (1 - r^2)(81 - 72x + 16r^2)
\]

\[
= 468 + 153r^2 + 4r^4 - 144(1 - x)^2 + 36x(1 - r^2)
\]

\[
+ 4(18 + 9r - 2r^2)(1 - r^2)
\]

\[
+ 4(1 - r^2)^2 + (1 - r^2)(81 - 72x + 16r^2)
\]

\[
= 625 - 144(1 - x)^2 + 36(1 + r)(1 - r)(r - x) \leq 625
\]

since \(36(1 + r)(1 - r)(r - x) \leq 72(1 - x)^2 \leq 144(1 - x)^2 \). Also note that equality holds if and only if \(r = x = 1 \).

The motivation behind the formula for \(\phi \) is that if \(z_1 \) and \(z_2 \) are real, then \(\phi_1(z_1, z_2) = \text{Re} g(z_1 + iz_2) \) and \(\phi_2(z_1, z_2) = \text{Im} g(z_1 + iz_2) \). Since \(g(\Delta) \subset \Delta \), one can hope that \(\phi(B) \subset B \). Further, the curve \(\phi(C) \) has second order tangency at \(e \) to \(C \).

THEOREM 2. \(\Phi(\overline{B}) \subset \overline{B}, \Phi \) is a homeomorphism of \(B \) onto \(\Phi(\overline{B}) \), and \(C_\Phi \) is unbounded on \(H^2 \).

PROOF. Since \(\phi \) and \(\psi \) both map \(\overline{B} \) into \(\overline{B} \), we have \(\Phi(\overline{B}) \subset \overline{B} \). Also \(\text{Re} \phi_1(f) > 0 \) for \(z \in \overline{B} \) and \(\psi \) is one-to-one on \(B \cap \{z: \text{Re} z_1 > 0\} \). Hence Lemmas 3 and 4 show that \(\Phi \) is a homeomorphism. It remains to show that \(C_\Phi \) is unbounded. Now

\[
\Phi_1(z) = \frac{1}{2} \left[1 + \frac{1}{25^2} (18 + 9z_1 - 2z_1^2 + 2z_2^2)^2 + (9z_2 - 4z_1z_2)^2 \right],
\]
and a computation shows that
\[1 - \Phi_1(z) = \frac{1}{1250} [144(1 - z_1)^2 + (1 - z_1^2 - z_2^2)(157 - 36z_1 + 4z_1^2 + 4z_2^2)]. \]
Thus,
\[|1 - \Phi_1(z)| \leq \frac{1}{6} (|1 - z_1|^2 + |1 - z_1^2 - z_2^2|) \text{ for } z \in \overline{B}. \]
We will show that \(\lim_{t \to 0} (\sigma(\Phi^*)^{-1}(S(e, t))/t^2) = \infty \) so that \(\sigma(\Phi^*)^{-1} \) is not a Carleson measure.

Consider the parametrization of \(\partial B \) given by \((z_1, z_2) = (\sqrt{1 - \rho}e^{i\theta_1}, \sqrt{\rho}e^{i\theta_2}); 0 \leq \rho \leq 1, -\pi < \theta_1, \theta_2 \leq \pi. \) It is easy to check that \(d\sigma = d\rho d\theta_1 d\theta_2. \) For \(0 < t < 1, \) let
\[B_t = \{(\sqrt{1 - \rho}e^{i\theta_1}, \sqrt{\rho}e^{i\theta_2}): 0 < \theta_1 < t, 0 < \theta_2 < \pi, \rho < \min\{\sqrt{t}, (t/\theta_2)\}. \]
The following estimates show that \(B_t \subset (\Phi^*)^{-1}(S(e, t)). \) Suppose that \(z \in B_t. \) Then
\[|1 - z_1|^2 = 1 + |z_1|^2 - 2|z_1| \cos \theta_1 \leq (1 - |z_1|)^2 + \theta_1^2 = (1 - \sqrt{1 - \rho})^2 + \theta_1^2 < \rho^2 + \theta_1^2 < t + t^2 < 2t. \]

Thus from (1), (2), and (3), \(|1 - \Phi_1(z)| < \frac{1}{6}(2t + 4t) = t. \)
Finally,
\[\sigma(B_t) = \int_0^t d\theta_1 \left[\int_0^{\sqrt{t}} d\theta_2 \int_0^{\sqrt{t}} d\rho + \int_0^{\pi} d\theta_2 \int_0^{t/\theta_2} d\rho \right] = t^2 + t \int_0^{\pi} \frac{t}{\theta_2} d\theta_2 \]
\[= t^2 + t^2 \ln \pi + t^2 \ln \frac{1}{\sqrt{t}} \geq \frac{t^2}{2} \ln \frac{1}{t}. \]
Thus \(\sigma(\Phi^*)^{-1} \) is not a Carleson measure.

\(\Phi \) is the simplest one-to-one map we have been able to construct which induces an unbounded composition operator. However, motivated by inequalities (2) and (3), we can construct a simple (quadratic) mapping \(\Lambda \) of \(B \) into \(B \) which is two-to-one on \(\overline{B} \) and so that \(C_{\Lambda} \) is unbounded.

Example 3. Consider \(\Lambda(z) = \frac{1}{3} (5 + 5z_1 - z_1^2 + \frac{3}{2}z_2^2, z_2^2). \) Just as in Lemma 2, one can show that
\[|5 + 5z_1 - z_1^2| \leq 5 + 5r - r^2 \text{ if } |z_1| = r < 1. \]
Thus if \(z \in \partial B \) and \(|z_1| = r, \) we have
\[|\Lambda(z)|^2 \leq |\Lambda_1(z)|^2 + |\Lambda_2(z)|^2 \leq \frac{1}{9} \left(5 + 5z_1 - z_1^2 \right) + \frac{3}{2}|z_2|^2 + \left(\frac{1}{9} (1 - r^2)^2 \right) \]
\[\leq \frac{1}{9} \left(5 + 5r - r^2 + \frac{3}{2}(1 - r^2) + \frac{1}{9}(1 + r)^2(1 - r)^2 \right) \]
\[\leq \frac{1}{9} \left[9 - \frac{5}{2}(1 - r)^2 + \frac{4}{9}(1 - r)^2 \right] \leq 1, \]
with equality only if $z_1 = r = 1$. Thus $\Lambda(B - \{e\}) \subset B$. It is elementary to check that $\Lambda(z) = \Lambda(w)$ if and only if $z_2^2 = w_2^2$, so that Λ is two-to-one on B.

$$1 - \Lambda_1(z) = 1 - \frac{1}{6} \left(5 + 5z_1 - z_1^2 + \frac{3}{2}z_2^2 \right) = \frac{1}{18} \left[5(1 - z_1)^2 + 3(1 - z_1^2 - z_2^2) \right],$$

so the same argument as in the end of the proof of Theorem 2 shows that $\sigma(\Lambda^*)^{-1}$ is not a Carleson measure. We close with the following example.

EXAMPLE 4. Let $\phi(z) = \frac{1}{2}(1 + z_1, z_2)$ and let ψ be as in Example 1. Set $\Phi = \psi \circ \phi$. Then just as for the map of Theorem 2, we have that Φ is a homeomorphism of B onto $\Phi(B)$, $\Phi(e) = e$, and $\Phi(B - \{e\}) \subset B$. Also the derivative of Φ^{-1} is unbounded near e. We claim that C_{Φ} is bounded, even though the MacCluer-Shapiro Theorem [4, Theorem 6.4] does not apply. The proof is somewhat tedious, and we only give an outline. We must show that there is a $C > 0$ so that if $\zeta \in \partial B$ and $t > 0$, then $\sigma(\Phi^*)^{-1}(S(\zeta, t)) \leq Ct^2$. Since on the complement of a neighborhood of e, $|\Phi^*|$ is strictly less than 1, we need only consider ζ near 1. Then if $z \in Q(\zeta, t)$ and t is small, we will also have z near e.

If $|1 - (\Phi(z), \zeta)| < t$, then

$$|8/\zeta_1 - 4 - (1 + z_1)^2 - z_2^2| < t.$$

But

$$|4 - (1 + z_1)^2 - z_2^2| \leq |1 - z_1| \left(3 + z_1 + (1 - |z_1|^2) \right) \leq 4|1 - z_1| + 2|1 - z_1| = 6|1 - z_1|.$$

Let $\lambda = 2\sqrt{2/\zeta_1} - 1$. Then $|\lambda| > 1$ and λ is near 1.

$$|8/\zeta_1 - 4 - (1 + z_1)^2 - z_2^2| \geq |\lambda - z_1| \left(|\lambda + 2 + z_1| - |z_2|^2 \right) \geq 3|\lambda - z_1| - 2(1 - |z_1|) \geq |\lambda - z_1|.$$

From (4), (5), and (6) we have

$$|8/\zeta_1| |\lambda - z_1| - \sqrt{1 - |\zeta_1|^2 \sqrt{1 - |z_1|^2}} / 6|1 - z_1| < t.$$

Some computation shows that

$$\sqrt{1 - |z_1|^2 \sqrt{1 - |z_1|^2}} \leq 2 \left(2\sqrt{2 - |\zeta_1|} - 1 - |z_1| \right) \leq 2|\lambda - z_1|.$$

Hence if ζ and z are sufficiently near e that $|\zeta_1| / 10 > \frac{1}{10}$ and $|1 - z_1| < \frac{1}{20}$, then from (7),

$$\frac{1}{10}|\lambda - z_1| - \frac{1}{20}|\lambda - z_1| < t.$$

Thus $z \in Q((\lambda/|\lambda|, 0), 20t)$. We can take $C = 400$.

REFERENCES

UNBounded Composition operators on $H^2(B_2)$

Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514