On the ergodic Hilbert transform for Lamperti operators
HTML articles powered by AMS MathViewer
- by Ryotaro Sato
- Proc. Amer. Math. Soc. 99 (1987), 484-488
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875385-6
- PDF | Request permission
Abstract:
This paper is devoted to the proof of almost everywhere existence of the ergodic Hilbert transform for a class of Lamperti operators.References
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- A.-P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353. MR 227354, DOI 10.1073/pnas.59.2.349
- Mischa Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167 (1956) (English, with Spanish summary). MR 84632
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- A. Ionescu Tulcea, Ergodic properties of isometries in $L^{p}$ spaces, $1<p<\infty$, Bull. Amer. Math. Soc. 70 (1964), 366–371. MR 206207, DOI 10.1090/S0002-9904-1964-11099-5
- Charn Huen Kan, Ergodic properties of Lamperti operators, Canadian J. Math. 30 (1978), no. 6, 1206–1214. MR 511557, DOI 10.4153/CJM-1978-100-x
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017
- Karl Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc. 88 (1983), no. 1, 39–43. MR 691275, DOI 10.1090/S0002-9939-1983-0691275-2 R. Sato, On the ergodic Hilbert transform for operators in ${L_p},1 < p < \infty$ (submitted).
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 484-488
- MSC: Primary 47A35; Secondary 44A15
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875385-6
- MathSciNet review: 875385