## Marx-Strohhäcker differential subordination systems

HTML articles powered by AMS MathViewer

- by Sanford S. Miller and Petru T. Mocanu
- Proc. Amer. Math. Soc.
**99**(1987), 527-534 - DOI: https://doi.org/10.1090/S0002-9939-1987-0875392-3
- PDF | Request permission

## Abstract:

Let $f(z) = z + {a_2}{z^2} + \cdots$ be analytic in the unit disc $U$ and let $k(z) = z/(1 - z)$. The classic Marx-Strohhäcker result, that a convex (univalent) function $f$ is starlike of order $\frac {1}{2}$, can be written in terms of differential subordinations as \[ zf''(z)/f’(z) \prec zk''(z)/k’(z) \Rightarrow zf’(z)/f(z) \prec zk’(z)/k(z).\] The authors determine general conditions on $k$ for which this relation holds. They also determine a different set of general conditions on $k$ for which \[ zf’(z)/f(z) \prec zk’(z)/k(z) \Rightarrow f(z)/z \prec k(z)/z.\] Finally, differential subordinations with starlike superordinate functions are considered.## References

- A. W. Goodman,
- D. J. Hallenbeck and Stephan Ruscheweyh,
*Subordination by convex functions*, Proc. Amer. Math. Soc.**52**(1975), 191–195. MR**374403**, DOI 10.1090/S0002-9939-1975-0374403-3
A. Marx, - Sanford S. Miller and Petru T. Mocanu,
*Differential subordinations and univalent functions*, Michigan Math. J.**28**(1981), no. 2, 157–172. MR**616267** - Sanford S. Miller and Petru T. Mocanu,
*On some classes of first-order differential subordinations*, Michigan Math. J.**32**(1985), no. 2, 185–195. MR**783572**, DOI 10.1307/mmj/1029003185 - Petru T. Mocanu,
*Convexity of some particular functions*, Studia Univ. Babeş-Bolyai Math.**29**(1984), 70–73 (English, with Romanian summary). MR**782294** - Petru T. Mocanu,
*Some integral operators and starlike functions*, Rev. Roumaine Math. Pures Appl.**31**(1986), no. 3, 231–235. MR**847030** - Christian Pommerenke,
*Univalent functions*, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR**0507768** - K\B{o}ichi Sakaguchi,
*A note on $p$-valent functions*, J. Math. Soc. Japan**14**(1962), 312–321. MR**148886**, DOI 10.2969/jmsj/01430312
E. Strohhäcker,

*Univalent functions*. Vols. 1, 2, Mariner, Tampa, Florida, 1983.

*Unteruchungen über schlicht Abbildungen*, Math. Ann.

**107**(1932/33), 40-67.

*Beiträge zur Theorie der schlicten Funktionen*, Math. Z.

**37**(1933), 356-380.

## Bibliographic Information

- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**99**(1987), 527-534 - MSC: Primary 30C80; Secondary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875392-3
- MathSciNet review: 875392