Some analogues of Markov and Descartes systems for right disfocality
HTML articles powered by AMS MathViewer
- by P. W. Eloe and Johnny Henderson
- Proc. Amer. Math. Soc. 99 (1987), 543-548
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875394-7
- PDF | Request permission
Abstract:
A necessary and sufficient condition for the disconjagacy of the $n$th order linear differential equation ${y^{(n)}} + {a_1}(x){y^{(n - 1)}} + \cdots + {a_n}(x)y = 0$ on a compact interval $I$ is that there exists a system of solutions ${y_1}, \ldots ,{y_n}$ such that any one of the following is satisfied: (i) $W({y_1}, \ldots ,{y_k}) > 0,1 \leq k \leq n$, on $I$; (ii) $W({y_i}_{_1}, \ldots ,{y_i}_{_k}) > 0,1 \leq {i_1} < \cdots < {i_k} \leq n,1 \leq k \leq n$, on $I$; or (iii) $W({y_i},{y_{i + 1}}, \ldots ,{y_i}_{ + k - 1}) > 0,1 \leq i \leq n - k + 1,1 \leq k \leq n$, on $I$. Necessary and sufficient criteria for the right disfocality of the linear differential equation on the compact interval $I$ are established in terms of systems of solutions satisfying conditions which are analogous to those given in (i), (ii), (iii).References
- E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0222517
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785 F. R. Gantmacher, The theory of matrices, vol. I, Chelsea, New York, 1960.
- James S. Muldowney, A necessary and sufficient condition for disfocality, Proc. Amer. Math. Soc. 74 (1979), no. 1, 49–55. MR 521872, DOI 10.1090/S0002-9939-1979-0521872-5
- James S. Muldowney, On invertibility of linear ordinary differential boundary value problems, SIAM J. Math. Anal. 12 (1981), no. 3, 368–384. MR 613318, DOI 10.1137/0512033
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 543-548
- MSC: Primary 34B05; Secondary 34B10, 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875394-7
- MathSciNet review: 875394