An alternating procedure for operators on $L_ p$ spaces
HTML articles powered by AMS MathViewer
- by M. A. Akcoglu and L. Sucheston
- Proc. Amer. Math. Soc. 99 (1987), 555-558
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875396-0
- PDF | Request permission
Abstract:
Let ${L_p}$ be the usual Banach spaces over a $\sigma$-finite measure space. If $1{\text { < }}p{\text { < }}\infty$ and $q = p{(p - 1)^{ - 1}}$, then ${\psi _p}:{L_p} \to {L_q}$ denotes the duality mapping defined by the requirements that $(f,{\psi _p}f) = \left \| f \right \|_p^p = {\left \| f \right \|_p}\left \| {{\psi _p}f} \right \|q,f \in {L_p}$. If $T:{L_p} \to {L_p}$ is a bounded linear operator, then $M(T):{L_p} \to {L_p}$ is the mapping defined by $M(T) = {\psi _q}{T^ * }{\psi _p}T$, where ${T^ * }:{L_q} \to {L_q}$ is the adjoint of $T$. It is proved that if ${T_n}$ is a sequence of operators on ${L_p}$ such that $\left \| {{T_n}} \right \| \leq 1$ for all $n$, then $M({T_n} \cdots {T_2}{T_1})f$ converges in ${L_p}$ for all $f \in {L_p}$.References
- Mustafa A. Akcoglu, Pointwise ergodic theorems in $L_{p}$ spaces, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 13–15. MR 550405 M. A. Akcoglu and D. Boivin, Approximation of contractions by isometries (in preparation).
- D. L. Burkholder, Semi-Gaussian subspaces, Trans. Amer. Math. Soc. 104 (1962), 123–131. MR 138986, DOI 10.1090/S0002-9947-1962-0138986-6
- D. L. Burkholder and Y. S. Chow, Iterates of conditional expectation operators, Proc. Amer. Math. Soc. 12 (1961), 490–495. MR 142144, DOI 10.1090/S0002-9939-1961-0142144-3
- J. L. Doob, A ratio operator limit theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 288–294. MR 163333, DOI 10.1007/BF00532502
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641 S. Mazur, Une remarque sur l’homeomorphie des champs functionnels, Studia Math. 1 (1929), 83-85.
- Gian-Carlo Rota, An “Alternierende Verfahren” for general positive operators, Bull. Amer. Math. Soc. 68 (1962), 95–102. MR 133847, DOI 10.1090/S0002-9904-1962-10737-X
- E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897. MR 131517, DOI 10.1073/pnas.47.12.1894 —, Topics in harmonic analysis, Princeton Univ. Press, Princeton, N.J., 1970. J. von Neumann, Functional operators, vol. 2, Princeton Univ. Press, Princeton, N.J., 1950.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 555-558
- MSC: Primary 47A35; Secondary 28D99, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875396-0
- MathSciNet review: 875396