## A Steinhaus type theorem

HTML articles powered by AMS MathViewer

- by P. N. Natarajan
- Proc. Amer. Math. Soc.
**99**(1987), 559-562 - DOI: https://doi.org/10.1090/S0002-9939-1987-0875397-2
- PDF | Request permission

## Abstract:

The sequence space ${\Lambda _r},r \geq 1$ being a fixed integer, is defined as \[ {\Lambda _r} = \left \{ {x = \left \{ {{x_k}} \right \} \in {l_\infty },{x_k} \in K,k = 0,1,2, \ldots ,\left | {{x_{k + r}} - {x_k}} \right | \to 0,k \to \infty } \right \},\] where $K$ is a complete, nontrivially valued field and ${l_\infty }$ is the space of bounded sequences with entries in $K$. In this paper, it is proved that given a regular matrix $A = ({a_{nk}}),{a_{nk}} \in K = {\mathbf {R}}$ or ${\mathbf {C}}$, there exists a sequence in ${\Lambda _r} - \cup _{i = 1}^{r - 1}{\Lambda _i}$ which is not $A$-summable. This is an improvement of the well-known Steinhaus theorem. It is, however, shown that this result fails to hold when $K$ is a complete, nontrivially valued, nonarchimedean field, whereas it is known that the Steinhaus theorem continues to hold.## References

- George Bachman,
*Introduction to $p$-adic numbers and valuation theory*, Academic Press, New York-London, 1964. MR**0169847** - Lawrence Narici, Edward Beckenstein, and George Bachman,
*Functional analysis and valuation theory*, Pure and Applied Mathematics, Vol. 5, Marcel Dekker, Inc., New York, 1971. MR**0361697** - P. N. Natarajan,
*The Steinhaus theorem for Toeplitz matrices in non-Archimedean fields*, Comment. Math. Prace Mat.**20**(1977/78), no. 2, 417–422. MR**519377** - K. Zeller and W. Beekmann,
*Theorie der Limitierungsverfahren*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15, Springer-Verlag, Berlin-New York, 1970 (German). Zweite, erweiterte und verbesserte Auflage. MR**0264267**

## Bibliographic Information

- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**99**(1987), 559-562 - MSC: Primary 40C05; Secondary 40D25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875397-2
- MathSciNet review: 875397