A note on the $bP$-component of $(4n-1)$-dimensional homotopy spheres
HTML articles powered by AMS MathViewer
- by Stephan Stolz
- Proc. Amer. Math. Soc. 99 (1987), 581-584
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875404-7
- PDF | Request permission
Abstract:
The $bP$-component of a $\left ( {4n - 1} \right )$-dimensional homotopy sphere $\Sigma \in {\theta _{4n - 1}} \cong b{P_{4n}} \oplus {\left ( {{\text {Co}}\ker J} \right )_{4n - 1}}$ bounding a spin manifold $M$ is shown to be computable in terms of the signature and the decomposable Pontrjagin numbers of $M$.References
- G. Brumfiel, On the homotopy groups of $\textrm {BPL}$ and $\textrm {PL/O}$, Ann. of Math. (2) 88 (1968), 291–311. MR 234458, DOI 10.2307/1970576
- G. Brumfiel, Homotopy equivalences of almost smooth manifolds, Comment. Math. Helv. 46 (1971), 381–407. MR 305419, DOI 10.1007/BF02566851
- James Eells Jr. and Nicolaas H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93–110. MR 156356, DOI 10.1007/BF02412768
- Friedrich Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Translated from the German and Appendix One by R. L. E. Schwarzenberger; With a preface to the third English edition by the author and Schwarzenberger; Appendix Two by A. Borel; Reprint of the 1978 edition. MR 1335917
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1 R. Lampe, Diffeomorphismen auf Sphären und die Milnor-Paarung, Diplomarbeit, Mainz, 1981.
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Stephan Stolz, Hochzusammenhängende Mannigfaltigkeiten und ihre Ränder, Lecture Notes in Mathematics, vol. 1116, Springer-Verlag, Berlin, 1985 (German). With an English introduction. MR 871476, DOI 10.1007/BFb0101604
- C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann. of Math. (2) 75 (1962), 163–189. MR 145540, DOI 10.2307/1970425
- C. T. C. Wall, Classification problems in differential topology. VI. Classification of $(s-1)$-connected $(2s+1)$-manifolds, Topology 6 (1967), 273–296. MR 216510, DOI 10.1016/0040-9383(67)90020-1
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 581-584
- MSC: Primary 57R60; Secondary 57R20, 57R55
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875404-7
- MathSciNet review: 875404