THE SUP = MAX PROBLEM FOR δ

ANDREW J. BERNER1 AND ISTVÁN JUHÁSZ

Abstract. Let $\delta(X) = \sup\{ d(D) : D \text{ is a dense subspace of } X \}$. It is shown that if κ is a limit cardinal, but not a strong limit, and $\text{cf}(\kappa) > \omega$, then there is a 0-dimensional Hausdorff space X such that $\delta(X) = \kappa$, but for all dense $D \subset X$, $d(D) < \kappa$. For all other values of κ, if X is Hausdorff and $\delta(X) = \kappa$, then there is a dense $D \subset X$ such that $d(D) = \kappa$.

1. Introduction. We consider the SUP = MAX problem for the cardinal function δ defined as

$$\delta(X) = \sup \{ d(D) : D \text{ is a dense subspace of } X \}.$$

For Hausdorff spaces, the solution is given by Theorem 1.

It is easy to verify that $d(X) \leq \delta(X) \leq d(X) \cdot t(X)$. Let $X = 2^{\omega_1}$. Then $d(X) = \omega$. However, $\Sigma(2^{\omega_1}) \subset X$ is dense, and $d(\Sigma(2^{\omega_1})) = \omega_1 = \omega(X)$. Thus we have an example where $\delta(X) > d(X)$.

Theorem 1. If κ is a limit cardinal, but not a strong limit, and $\text{cf}(\kappa) > \omega$, then there is a 0-dimensional Hausdorff space X such that $\delta(X) = \kappa$, but for all dense $D \subset X$, $d(D) < \kappa$. Otherwise, if X is Hausdorff and $\delta(X) = \kappa$, then there is a dense $D \subset X$ such that $d(D) = \kappa$.

We will prove Theorem 1 in §§2 and 3.

As always with the SUP = MAX problem, we need only consider the case where $\delta(X) = \kappa$ is a limit. It is easy to see that the theorem fails for non-Hausdorff X. Suppose, for example, $\kappa = \bigcup_{\alpha < \text{cf}(\kappa)} \kappa_\alpha$. Let $\{ X_\alpha : \alpha < \text{cf}(\kappa) \}$ be a pairwise disjoint collection of sets with $|X_\alpha| = \kappa_\alpha$. Let $X = \bigcup_{\alpha < \text{cf}(\kappa)} X_\alpha$. Define a set $O \subset X$ to be open if either $O = \emptyset$ or $|X_\alpha - O| < \kappa_\alpha$ for all $\alpha < \text{cf}(\kappa)$. X is T_1 but not T_2. Since X_α is dense in X, $\delta(X) = \kappa$. If $D \subset X$ is dense, then $|D \cap X_\alpha| = \kappa_\alpha$ for some $\alpha < \text{cf}(\kappa)$ (otherwise D is closed), and then $D \cap X_\alpha$ is dense, so $d(D) < \kappa$. Thus SUP = MAX fails for all limits.

We will use the following notation. If S is a set, $\sigma(S) = \{ p \in 2^S : |p^-(1)| < \omega \}$. Note that $\sigma(S)$ is dense in 2^S. If S is a set, $H(S)$ is the collection of all finite partial functions from S into $\{0,1\}$. If $h \in H(S)$, then $\langle h \rangle = \{ p \in 2^S : p \text{ extends } h \}$. Thus $\{ \langle h \rangle : h \in H(S) \}$ is the standard basis for 2^S.

For the rest of the paper, we will assume that all spaces are Hausdorff.
2. When SUP = MAX. We first prove the second part of the theorem. As noted, we may assume \(\kappa \) is a limit cardinal. Suppose \(\delta(X) = \kappa \) and \(\kappa \) is a strong limit (i.e. if \(\lambda < \kappa \) then \(2^\lambda < \kappa \)). Then \(d(X) = \kappa \) since \(|X| \leq \exp(\exp(d(X))) \) [1, Theorem 2.4] and \(\delta(X) \leq |X| \).

Suppose \(\delta(X) = \kappa \) and \(\text{cf}(\kappa) = \omega \). Let

\[\mathcal{B} = \{ O \subset X: O \neq \emptyset \text{ is open and if } U \subset O \text{ is open then } \delta(U) = \delta(O) \} \]

If \(V \) is an open set, we can choose an open \(O \subset V \) such that \(\delta(O) = \min\{ \delta(O'): O' \text{ is open and } O' \subset V \} \). Then \(O \in \mathcal{B} \) so \(\mathcal{B} \) is a \(\pi \)-base for \(X \). Let \(\mathcal{M} \) be a maximal collection of pairwise disjoint elements of \(\mathcal{B} \).

Case 1. \(|\mathcal{M}| = \kappa \). Suppose \(D \) is dense in \(X \). We show \(d(D) \geq \kappa \). Let \(S \subset D \) be dense. Then \(S \) is dense in \(X \), thus \(S \cap M \neq \emptyset \) for all \(M \in \mathcal{M} \), so \(|S| \geq \kappa \). Therefore, \(\delta(D) = \kappa \) (since \(\delta(X) = \kappa \)).

Case 2a. \(|\mathcal{M}| < \kappa \), but for all \(M \in \mathcal{M} \), \(\delta(M) < \kappa \). There cannot be a cardinal \(\lambda < \kappa \) s.t. \(\delta(M) \leq \lambda \) for all \(M \in \mathcal{M} \), since if there were, suppose \(D \) is a dense subset of \(X \). Then for each \(M \in \mathcal{M} \) there is \(D_M \subset D \cap M \) which is dense in \(D \cap M \) such that \(|D_M| \leq \delta(M) \leq \lambda \). Then \(\bigcup_{M \in \mathcal{M}} D_M \) is dense in \(D \), since \(\mathcal{M} \) was maximal and \(B \) was a \(\pi \)-base. However, \(\bigcup_{M \in \mathcal{M}} D_M \leq \lambda \cdot |\mathcal{M}| \). This implies that \(\delta(X) \leq \lambda \cdot |\mathcal{M}| < \kappa \), so there can be no such \(\lambda \). Thus there is a sequence \(\langle \kappa_i : i \in \omega \rangle \) converging to \(\kappa \) and a sequence \(\langle M_i : i \in \omega \rangle \) with \(M_i \in \mathcal{M} \) and \(\delta(M_i) > \kappa_i \) for all \(i \). Let

\[\mathcal{M}' = \{ M_i : i \in \omega \} \cup \{ \bigcup \{ M \in \mathcal{M}: M \neq M_i \text{ for all } i \in \omega \} \} \]

\(\mathcal{M}' \) is a maximal pairwise disjoint collection of open sets in \(X \). For each \(i \), choose a set \(D_i \subset M_i \) such that \(d(D_i) > \kappa_i \) and \(D_i \) is dense in \(M_i \). Then \(D = \bigcup_{i \in \omega} D_i \cup \bigcup \{ M \in \mathcal{M}: M \neq M_i \text{ for all } i \in \omega \} \) is a dense subset of \(X \). Suppose \(D' \) is a dense subset of \(D \). Then \(D' \cap D_i \) is dense in \(D_i \), thus \(|D' \cap D_i| > \kappa_i \). Since the collection \(\{ D_i : i \in \omega \} \) is pairwise disjoint, \(|D'| > |\bigcup_{i \in \omega} D' \cap D_i| = \kappa \). Thus \(d(D) = \kappa \) (since \(\delta(X) = \kappa \), \(d(D) \leq \kappa \)).

Case 2b. There is \(M \in \mathcal{M} \) s.t. \(\delta(M) = \kappa \) (note that since \(\delta(0) \leq \delta(X) \) for all open \(O \subset X \), we cannot have \(\delta(M) > \kappa \)).

Since \(X \) is Hausdorff, we can choose a countable maximal collection \(\{ M_i : i \in \omega \} \) of pairwise disjoint open subsets of \(X \). By the definition of \(\mathcal{M} \), \(\delta(M_i) = \kappa \) for all \(i \). Choose a sequence \(\langle \kappa_i : i \in \omega \rangle \) of cardinals converging to \(\kappa \) with \(\kappa_i < \kappa \) for each \(i \). Choose a dense \(D_i \subset M_i \) s.t. \(d(D_i) > \kappa_i \). Let \(D = \bigcup_{i \in \omega} D_i \cup (X - M) \). By an argument similar to Case 2a, \(d(D) = \kappa \).

It was in this last argument that we needed to know that \(\text{cf}(\kappa) = \omega \), since we could only guarantee that we could choose a countable collection of pairwise disjoint open subsets of \(M \).

When SUP = MAX fails. Suppose \(\kappa \) is a limit cardinal, but not a strong limit, and \(\text{cf}(\kappa) > \omega \). We will construct a space \(X \subset 2^\kappa \) such that \(\delta(X) = \kappa \), but for all dense \(D \subset X \), \(d(D) < \kappa \).
Choose \(\lambda < \kappa \) such that \(2^\lambda \geq \kappa \). It is well known that \(2^\kappa \) has a dense subset \(S \) with \(|S| = \lambda \).

Let \(\langle \kappa_\alpha: \alpha < \text{cf}(\kappa) \rangle \) be an increasing sequence of cardinals converging to \(\kappa \) with \(\kappa_0 = 0 \) and \(\kappa_1 = \lambda \). For each \(\alpha < \text{cf}(\kappa) \), let \(\hat{\alpha} = [\kappa_\alpha, \kappa_{\alpha+1}) \). If \(\beta < \kappa \), Let \(\alpha(\beta) \) be the unique \(\alpha < \text{cf}(\kappa) \) such that \(\beta \in \hat{\alpha} \), and if \(J \subseteq \kappa \), let \(\alpha(J) = \{ \alpha(\beta): \beta \in J \} \).

For \(\alpha < \text{cf}(\kappa) \) define

\[
X_\alpha = \{ p \in 2^\kappa: p \mid \hat{\alpha} \subseteq \sigma(\hat{\alpha}) \text{ and there is } s \in S \text{ such that } p \mid (\pi - \hat{\alpha}) = s \mid (\kappa - \hat{\alpha}) \}.
\]

Let \(X = \bigcup_{\alpha < \text{cf}(\kappa)} X_\alpha \). Since \(S \) is dense in \(2^\kappa \) and \(\sigma(\hat{\alpha}) \) is dense in \(2^\hat{\alpha} \), \(X_\alpha \) is dense in \(X \) for each \(\alpha \). Also (since \(d(\sigma(\hat{\alpha})) = \kappa_{\alpha+1} \geq \lambda \) \(d(X_\alpha) = \kappa_{\alpha+1} \)). Thus \(\delta(X) \geq \kappa \), and, since \(w(X) = w(2^\kappa) = \kappa \), \(\delta(X) = \kappa \).

Suppose \(D \) is a dense subset of \(X \). We must show that \(d(D) < \kappa \). Note in what follows, that, since \(X \) is dense in \(2^\kappa \), if \(O \) is an open subset of \(2^\kappa \), \(O \cap D \neq \emptyset \) if and only if \(O \neq \emptyset \).

Suppose \(h \in H(\kappa) \). We will say \(h \) is good if there is \(\beta < \text{cf}(\kappa) \) s.t. \(\langle h \rangle \cap D \cap X_\beta \neq \emptyset \) and \(\beta \in \alpha(\text{dom}(h)) \). Otherwise, we will say \(h \) is bad. (Of course, whether \(h \) is good or bad depends upon \(D \).

For each \(s \in S \), let

\[
A_s = \{ \beta: \exists p \in X_\beta \cap D \text{ such that } p \mid (\kappa - \hat{\beta}) = s \mid (\kappa - \hat{\beta}) \}.
\]

If \(A_s \) is finite, let \(B_s = A_s \). If \(A_s \) is infinite, let \(B_s \) be a countably infinite subset of \(A_s \).

For each \(s \in S \) and \(\beta \in B_s \), choose \(p(s, \beta) \in D \cap X_\beta \) such that \(p(s, \beta) \mid (\kappa - \hat{\beta}) \) (i.e. \(p(s, \beta) \) is a witness to \(\beta \in B_s \)). Let \(D_G = \{ p(s, \beta): s \in S, \beta \in B_s \} \). Then \(|D_G| \leq \lambda \).

If \(h \in H(\kappa) \) is bad, let \(D_h = \{ \beta < \text{cf}(\kappa): D \cap X_\beta \cap \langle h \rangle \neq \emptyset \} \). Then, by the definition of “bad”, \(D_h \subseteq \alpha(\text{dom}(h)) \). Let \(\mathcal{H} \subseteq H(\kappa) \) be a maximal collection such that if \(h \in \mathcal{H} \), then \(h \) is bad and if \(h_1, h_2 \in \mathcal{H} \) and \(h_1 \neq h_2 \), then \(\langle h_1 \rangle \cap \langle h_2 \rangle = \emptyset \). Since \(c(2^\kappa) = \omega \), \(|\mathcal{H}| \leq \omega \). Let \(J = \bigcup\{ D_h: h \in \mathcal{H} \} \). Since \(D_h \) is finite for each \(h \in \mathcal{H} \), \(|J| \leq \omega \). Finally, let \(D_B = \bigcup\{ D \subseteq X_\beta: \beta \in J \} \). Since \(|X_\beta| < \lambda \cdot |\beta| = \kappa_{\beta+1} < \kappa \), and \(|J| \leq \omega < \text{cf}(\kappa) \), it follows that \(|D_B| < \kappa \).

We can now show that \(D_G \cup D_B \) is a dense subset of \(D \). Suppose \(h \in H(\kappa) \). If \(h \) is good, then there is \(\beta < \text{cf}(\kappa) \) and \(p \in \langle h \rangle \cap D \cap X_\beta \) such that \(\beta \not\in \alpha(\text{dom}(h)) \). Choose \(s \in S \) such that \(p \mid (\kappa - \hat{\beta}) = s \mid (\kappa - \hat{\beta}) \). Then \(s \in \langle h \rangle \). If \(A_s \) is finite (and thus \(B_s = A_s \)), let \(\beta' = \beta \). If \(B_s \) is infinite, choose \(\beta' \in B_s - \alpha(\text{dom}(h)) \). Either way, \(\beta' \in B_s \). Since \(p(s, \beta') \mid (\kappa - \hat{\beta'}) = s \mid (\kappa - \hat{\beta'}) \) and \(s \in \langle h \rangle \), then \(p(s, \beta') \in \langle h \rangle \cap D_G \).

If \(h \) is bad, then there is \(h' \in \mathcal{H} \) such that \(\langle h \rangle \cap \langle h' \rangle \neq \emptyset \). Let \(D \cap X_\beta \cap \langle h \rangle \cap \langle h' \rangle \neq \emptyset \). Then \(\beta \in D_{h'} \subseteq \text{dom}(h) \), so \(D_B \cap \langle h \rangle \neq \emptyset \). Thus \(D_G \cup D_B \) is a dense subset of \(D \). Since \(|D_G| < \lambda < \kappa \), and \(|D_B| < \kappa \), \(d(D) < \kappa \).

4. Questions about compact spaces. For any space \(X \), \(\delta(X) \leq \pi(X) \). It is shown in [J, Theorem 3.14c] that if \(X \) is compact, then \(X \) has a dense left separated sequence of order type \(\pi(X) \). If \(\pi(X) \) is regular, then this sequence has density \(\pi(X) \), so we
have shown that if X is compact and $\pi(X)$ is regular, then $\delta(X) = \pi(X)$, and $\text{SUP} = \text{MAX}$ holds for δ. This raises the following two questions:

(a) If X is compact, does $\delta(X) = \pi(X)$?
(b) If X is compact, does $\text{SUP} = \text{MAX}$ hold for δ?

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DALLAS, IRVING, TEXAS

HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY (Current address of István Juhász)

Current address (A. J. Berner): Hypergraphics Corporation, Denton, Texas 76021