Entropies of automorphisms of a topological Markov shift
HTML articles powered by AMS MathViewer
- by D. A. Lind
- Proc. Amer. Math. Soc. 99 (1987), 589-595
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875406-0
- PDF | Request permission
Abstract:
Let $\sigma$ be a mixing topological Markov shift, $\lambda$ a weak Perron number, $q\left ( t \right )$ a polynomial with nonnegative integer coefficients, and $r$ a non-negative rational. We construct a homeomorphism commuting with $\sigma$ whose topological entropy is $\log {\left [ {q\left ( \lambda \right )q\left ( {1/\lambda } \right )} \right ]^r}$. These values are shown to include the logarithms of all weak Perron numbers, and are dense in the nonnegative reals.References
- Mike Boyle and Wolfgang Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), no. 1, 125–149. MR 887501, DOI 10.1090/S0002-9947-1987-0887501-5 M. Boyle, D. Lind and D. Rudolph, The automorphism group of a subshift of finite type, preprint, Universities of Maryland and Washington, 1986.
- Ethan M. Coven, Topological entropy of block maps, Proc. Amer. Math. Soc. 78 (1980), no. 4, 590–594. MR 556638, DOI 10.1090/S0002-9939-1980-0556638-1
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- Brian Marcus and Sheldon Newhouse, Measures of maximal entropy for a class of skew products, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 105–125. MR 550415
- J. Patrick Ryan, The shift and commutativity, Math. Systems Theory 6 (1972), 82–85. MR 305376, DOI 10.1007/BF01706077 J. Wagoner, Markov partitions and ${K_2}$, preprint, University of California, Berkeley, 1985.
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
- Stephen Wolfram, Universality and complexity in cellular automata, Phys. D 10 (1984), no. 1-2, 1–35. Cellular automata (Los Alamos, N.M., 1983). MR 762650, DOI 10.1016/0167-2789(84)90245-8
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 589-595
- MSC: Primary 54H20; Secondary 28D20, 54C70, 58F11
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875406-0
- MathSciNet review: 875406