Best constant for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with positive potentials
HTML articles powered by AMS MathViewer
- by Mark S. Ashbaugh and Rafael Benguria
- Proc. Amer. Math. Soc. 99 (1987), 598-599
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875408-4
- PDF | Request permission
Abstract:
We prove the optimal upper bound ${\lambda _2}/{\lambda _1} \leq 4$ for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with nonnegative potentials. Equality holds if and only if the potential vanishes identically.References
- R. Benguria, A note on the gap between the first two eigenvalues for the Schrödinger operator, J. Phys. A 19 (1986), no. 3, 477–478. MR 832589, DOI 10.1088/0305-4470/19/3/026
- M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121–127. MR 72332, DOI 10.1093/qmath/6.1.121
- P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267–310. MR 495676, DOI 10.1215/S0012-7094-78-04516-7 E. M. Harrell, unpublished, 1982.
- V. A. Marčenko, On reconstruction of the potential energy from phases of the scattered waves, Dokl. Akad. Nauk SSSR (N.S.) 104 (1955), 695–698 (Russian). MR 0075402
- L. E. Payne, G. Pólya, and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289–298. MR 84696, DOI 10.1002/sapm1956351289
- I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319–333. MR 829055
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 598-599
- MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875408-4
- MathSciNet review: 875408