Note on compatible vector topologies
HTML articles powered by AMS MathViewer
- by Jerzy Kąkol
- Proc. Amer. Math. Soc. 99 (1987), 690-692
- DOI: https://doi.org/10.1090/S0002-9939-1987-0877041-7
- PDF | Request permission
Abstract:
Let $\left \langle {X,Y} \right \rangle$ be a dual pair. Then $X$ admits the finest locally convex topology $\mu$ which is compatible with $\left \langle {X,Y} \right \rangle$. In contrast, it is proved that there is no finest vector topology on $X$ which is compatible with $\left \langle {X,Y} \right \rangle$ provided $X$ contains a $\mu$-dense subspace of infinite codimension.References
- Norbert Adasch, Bruno Ernst, and Dieter Keim, Topological vector spaces, Lecture Notes in Mathematics, Vol. 639, Springer-Verlag, Berlin-New York, 1978. The theory without convexity conditions. MR 0487376
- Susanne Dierolf, A note on the lifting of linear and locally convex topologies on a quotient space, Collect. Math. 31 (1980), no. 3, 193–198. MR 621724
- S. Dierolf, The barrelled space associated with a bornological space need not be bornological, Bull. London Math. Soc. 12 (1980), no. 1, 60–62. MR 565486, DOI 10.1112/blms/12.1.60
- S. O. Iyahen, On certain classes of linear topological spaces, Proc. London Math. Soc. (3) 18 (1968), 285–307. MR 226358, DOI 10.1112/plms/s3-18.2.285
- Iwo Labuda and Zbigniew Lipecki, On subseries, convergent series and $m$-quasibases in topological linear spaces, Manuscripta Math. 38 (1982), no. 1, 87–98. MR 662771, DOI 10.1007/BF01168388
- Z. Lipecki, On some dense subspaces of topological linear spaces, Studia Math. 77 (1984), no. 5, 413–421. MR 751762, DOI 10.4064/sm-77-5-413-421
- N. T. Peck and Horacio Porta, Linear topologies which are suprema of dual-less topologies, Studia Math. 47 (1973), 63–73. MR 336278, DOI 10.4064/sm-47-1-63-73
- W. Roelcke and S. Dierolf, On the three-space-problem for topological vector spaces, Collect. Math. 32 (1981), no. 1, 13–35. MR 643398
- Bella Tsirulnikov, On conservation of barrelledness properties in locally convex spaces, Bull. Soc. Roy. Sci. Liège 49 (1980), no. 1-2, 5–25 (English, with French summary). MR 586948
- Manuel Valdivia, On final topologies, J. Reine Angew. Math. 251 (1971), 193–199. MR 295040, DOI 10.1515/crll.1971.251.193
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 690-692
- MSC: Primary 46A15
- DOI: https://doi.org/10.1090/S0002-9939-1987-0877041-7
- MathSciNet review: 877041