Certain properties of derivations
HTML articles powered by AMS MathViewer
- by Mark Spivack
- Proc. Amer. Math. Soc. 99 (1987), 712-718
- DOI: https://doi.org/10.1090/S0002-9939-1987-0877045-4
- PDF | Request permission
Abstract:
We consider two properties of implemented derivations on operator algebras, and give applications. One provides a simple test and leads to examples of nonimplemented derivations on commutative algebras. The other is stronger and yields a necessary and sufficient condition for derivations on $pB(H){p^ \bot }$ to be implemented, where $H$ is a Hilbert space and $p$ is a projection on $H$. Any algebra $S$ on $H$ has an extension to an algebra ${S_2}$ acting on $H \oplus {\mathbf {C}}$ containing such an algebra. We show that any derivation $\delta$ on an algebra $S$ is implemented if and only if $\delta$ has a bounded strongly continuous extension to ${S_2}$. If so we can construct an implementing operator explicitly.References
- Erik Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), no. 2, 155–161. MR 448110, DOI 10.1007/BF01351601
- Erik Christensen, Extension of derivations, J. Functional Analysis 27 (1978), no. 2, 234–247. MR 481217, DOI 10.1016/0022-1236(78)90029-0
- F. Gilfeather, Derivations on certain CSL algebras, J. Operator Theory 11 (1984), no. 1, 145–156. MR 739799
- Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259. MR 121675, DOI 10.2307/2372733
- E. Christopher Lance, Cohomology and perturbations of nest algebras, Proc. London Math. Soc. (3) 43 (1981), no. 2, 334–356. MR 628281, DOI 10.1112/plms/s3-43.2.334
- J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. (3) 15 (1965), 61–83. MR 171174, DOI 10.1112/plms/s3-15.1.61
- J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432–438. MR 374927, DOI 10.1112/jlms/s2-5.3.432
- Mark Spivack, Derivations and nest algebras on Banach space, Israel J. Math. 50 (1985), no. 3, 193–200. MR 793852, DOI 10.1007/BF02761400
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 712-718
- MSC: Primary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0877045-4
- MathSciNet review: 877045