LINEAR SUMS OF CERTAIN ANALYTIC FUNCTIONS

RAM SINGH AND SURINDER PAUL

ABSTRACT. Let \(f \) belong to a certain subclass of the class of functions which are regular in the unit disc \(E = \{ z : |z| < 1 \} \). Suppose that \(\phi = \phi(f, f', f'') \) and \(\psi = \psi(f, f', f'') \) are regular in \(E \) with \(\text{Re} \phi > 0 \) in \(E \) and \(\text{Re} \psi \not> 0 \) in the whole of \(E \). In this paper we consider the following two new types of problems: (i) To find the ranges of the real numbers \(\lambda \) and \(\mu \) such that \(\text{Re}(\lambda \phi + \mu \psi) > 0 \) in \(E \). (ii) To determine the largest number \(\rho, 0 < \rho < 1 \), such that \(\text{Re}(\phi + \psi) > 0 \) in \(|z| < \rho \).

1. Introduction. Let \(A \) denote the class of functions \(f \) that are regular in the unit disc \(E = \{ z : |z| < 1 \} \) and are normalized by the conditions \(f(0) = f'(0) - 1 = 0 \). We shall denote by \(S \) the subclass of \(A \) whose members are univalent in \(E \). A function \(f \) belonging to \(S \) is said to be starlike of order \(\alpha, 0 \leq \alpha < 1 \), if \(\text{Re}\{zf'(z)/f(z)\} > \alpha, z \in E \), and we denote by \(S_t(\alpha) \) the class of all such functions. \(S_t = S_t(0) \) will be referred to as the class of starlike functions. Finally, we shall denote by \(K \) the class of convex functions, consisting of those elements \(f \in S \) which satisfy the condition \(\text{Re}(1 + z f''(z)/f'(z)) > 0 \) in \(E \). It is well known that \(K \subset S_t(1/2) \).

If \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) are regular in \(E \), then their Hadamard product/convolution is the function denoted by \(f \ast g \) and defined by the power series
\[
(f \ast g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.
\]
It is known that \(f \ast g \) is also regular in \(E \).

Let \(f(z) = \sum_{n=1}^{\infty} a_n z^n \) be regular in \(E \). Then the de la Vallee Poussin mean of \(f \) of order \(n \), \(V_n(z, f) \), is defined by
\[
V_n(z, f) = \frac{n}{n+1} a_1 z + \frac{n(n-1)}{(n+1)(n+2)} a_2 z^2 + \cdots + \frac{n(n-1)(n-2) \cdots 2 \cdot 1}{(n+1)(n+2) \cdots (2n)} a_n z^n.
\]

Let \(f \) be regular in \(E \) and \(g \) regular and univalent in \(E \) with \(f(0) = g(0) \). We say that \(f \) is subordinate to \(g \) in \(E \) (in symbols \(f < g \) in \(E \)) if \(f(E) \subset g(E) \).

A sequence \(\{c_n\}_{n=1}^{\infty} \) of complex numbers is said to be a subordinating factor sequence if, whenever \(f(z) = \sum_{n=1}^{\infty} a_n z^n \) is regular and convex in \(E \), we have
\[
\sum_{n=1}^{\infty} c_n a_n z^n < f(z) \quad \text{in} \ E.
\]
In the present paper we shall mainly be concerned with the following two new types of problems:

(a) If \(\phi = (f, f', f'') \) and \(\psi = \psi(f, f', f'') \), where \(f \in K \) or \(S_t(1/2) \), such that \(\text{Re} \phi > 0 \) in \(E \) and \(\text{Re} \psi \) is not necessarily positive in the whole of the unit disc \(E \), to find the ranges of real numbers \(\lambda \) and \(\mu \) such that \(\text{Re}(\lambda \phi + \mu \psi) > 0 \) in \(E \).

(b) To find the largest number \(\rho \), \(0 < \rho < 1 \), such that \(\text{Re}(\phi + \psi) > 0 \) in \(|z| < \rho \).

2. Preliminary results. We shall need the following results, which we state as lemmas.

Lemma 1. If \(f \in K \) and \(g \in S_t \), then \((f \ast g_F)/(f \ast g) \) takes values in the convex hull of \(F(E) \) for every function \(F \) regular in \(E \).

Lemma 2. If \(f \) and \(g \) belong to \(S_t(1/2) \), then \((f \ast g_F)/(f \ast g) \) takes values in the convex hull of \(F(E) \) for every function \(F \) regular in \(E \).

Lemma 3. A sequence \(\{c_n\}_1^\infty \) of complex numbers is a subordinating factor sequence if and only if \(\text{Re}(1 + 2 \sum_{n=1}^\infty c_n z^n) > 0 \) \(|z| < 1\).

Lemmas 1 and 2 are due to Ruscheweyh and Sheil-Small [1] and Lemma 3 is due to Wilf [2].

3. Theorems and their proofs. It is well known [1] that if \(f \in S_t(1/2) \), then \(\text{Re}(f(z)/s_n(z, f)) > 1/2 \), \(z \in E \), where \(s_n(z, f) \) denotes the \(n \)th partial sum of \(f \). From this it follows that given \(f \in S_t(1/2) \) and any two real numbers \(\lambda \geq 0 \) and \(\mu \geq 0 \), with at least one of them nonzero, then we have

\[
\text{Re} \left[\lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z, f)}{f(z)} \right] > 0 \quad (z \in E).
\]

In Theorem 1 below we prove that this result continues to hold even when \(\mu \) is a suitably restricted negative or complex number.

Theorem 1. Let \(f \in S_t(1/2) \) and

\[
L = \text{Re} \left[\lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z, f)}{f(z)} \right],
\]

where \(s_n(z, f) \) denotes the \(n \)th partial sum of \(f \). Then \(L > 0 \) in \(E \) if (i) \(\lambda \geq 0 \), \(\mu \geq 0 \) and at least one of them is nonzero, (ii) \(\mu \) is a complex number and \(\lambda > 4|\mu| \).

The result is sharp in the sense that the ranges of \(\lambda \) and \(\mu \) cannot be increased.

Proof. Case (i) being obvious, we take up the proof of (ii). Since \(f \) is given to be in \(S_t(1/2) \) and \(g(z) = z/(1 - z) \in K \subset S_t(1/2) \), it follows from Lemma 2 that if we choose \(F(z) = \lambda/(1 - z) + \mu(1 - z^n) \) then the function

\[
\frac{(f \ast g_F)(z)}{(f \ast g)(z)} = \frac{f(z)}{f(z)} \ast \frac{zF(z)/(1 - z)}{z/(1 - z)} = \frac{f(z) \ast [z/(1 - z)][\lambda/(1 - z) + \mu(1 - z^n)]}{f(z) \ast z/(1 - z)} = \lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z, f)}{f(z)},
\]

takes values in the convex hull of \(F(E) \).
Now, since by hypothesis, $\lambda > 4|\mu|$, we find that, for $z \in E$,

$$\text{Re } F(z) = \text{Re } \left[\frac{\lambda}{1 - z} + \mu(1 - z^n) \right] \geq \frac{\lambda}{1 + r} - |\mu|(1 + r^n) > \frac{\lambda}{2} - 2|\mu| > 0$$

(equality in the second line holds at $z = -|z| = -r$ when μ is negative and n is odd).

Since $(\lambda z f'(z)/f(z) + \mu s_n(z, f)/f(z))$ takes values in the convex hull of $F(E)$, assertion (ii) now follows.

To prove that the ranges of λ and μ cannot be increased without violating the assertion of our theorem, we consider the function $f_0(z) = z/(1 - z)$ which belongs to K and hence to $S_t(1/2)$. Let

$$L_0 = \text{Re } \left[\frac{\lambda z f'_0(z)}{f'_0(z)} + \mu s_n(z, f_0) \right] = \text{Re } \left[\frac{\lambda}{1 - z} + \mu(1 - z^n) \right] \quad (z \in E).$$

If $\lambda \geq 0$, $\mu \geq 0$ with at least one of them nonzero, then clearly $L_0 > 0$ in E. On the other hand if $\lambda < 0$, then $L_0 \neq 0$ in E whatever μ may be. Finally, when $\lambda > 0$ and μ is negative, then it is seen that $L_0 > 0$ in E only when $(\lambda/2 - 2|\mu|) > 0$. This completes the proof of our theorem.

REMARK. Since the function $f_0(z)$ also belongs to K, Theorem 1 remains sharp within this subclass of $S_t(1/2)$.

The significance of the following theorem emerges from the fact that if $f \in K$, then $\text{Re } (1/f'(z))$ need not be positive in the whole of the unit disc.

THEOREM 2. If $f \in K$, then for all λ and μ with $\mu \geq 0$ and $\lambda > 2\mu$, we have

$$\text{Re } \left[\frac{\lambda f(z)}{zf'(z)} + \frac{\mu}{f'(z)} \right] > 0 \quad (z \in E).$$

PROOF. Since $f \in K$ and the function $g(z) = z/(1 - z)^2$ is in S_t, in view of Lemma 1 we conclude that for all $z \in E$ the function w, defined by

$$w(z) = \frac{f(z) *[z/(1 - z)^2][\lambda(1 - z) + \mu(1 - z)^2]}{f(z) * z/(1 - z)^2} = \frac{\lambda f(z)}{zf'(z)} + \frac{\mu}{f'(z)},$$

takes values in the convex hull of $F(E)$, where $F(z) = \lambda(1 - z) + \mu(1 - z)^2$.

Now, since by hypothesis, $\lambda > 2\mu$, $\mu \geq 0$, we find that

$$\text{Re } F(z) = \text{Re } [\lambda(1 - z) + \mu(1 - z)^2] = (\lambda - 2\mu)(1 - r \cos \theta) + \mu[(1 - r^2) + 2(1 - r \cos \theta)^2] \quad (z = re^{i\theta}) > 0, \quad z \in E.$$

The assertion of Theorem 2 is now clear.

The fact that for every $f \in S_t(1/2)$, $\text{Re } f'(z) > 0$ only in $|z| < 1/\sqrt{2} = 0.707 \ldots$ underlines the importance of our next theorem.
THEOREM 3. If \(f \in S_t(1/2) \), then
\[
\text{Re} \left(\frac{f(z)}{z} + f'(z) \right) > 0
\]
in \(|z| < \rho = \sqrt{4\sqrt{2} - 5} \approx 0.81 \ldots. \) The number \(\rho \) is the best possible one.

PROOF. Consider the function
\[
h(z) = \frac{1}{1 - z} + \frac{1}{(1 - z)^2} \quad (z \in E).
\]

We first proceed to prove that \(\text{Re} h(z) > 0 \) in \(|z| < \rho = \sqrt{4\sqrt{2} - 5} \approx 0.81 \ldots. \)

Letting \(\frac{1}{1 - z} = \text{Re} e^{i\phi} \), we get
\[
\frac{1}{1 + r} < R < \frac{1}{1 - r} \quad (|z| = r)
\]
and
\[
\cos \phi = \frac{1 + R^2 - r^2R^2}{2R} \quad (\leq 1).
\]

(1) and (3) provide
\[
2 \text{Re} h(z) = 2|R \cos \phi + R^2 \cos 2\phi|
= 2 + (1 - 3r^2)t + (1 - r^2)^2t^2 \quad (t = R^2)
= \psi(t), \text{ say.}
\]

It is now readily verified that for \(r \geq \sqrt{7} - 2 \), \(t_1 \) given by \(t_1 = (3r^2 - 1)/(2(1 - r^2)^2) \) lies in the range of \(t = R^2 \) and that \(\partial \psi / \partial t = 0 \) and \(\partial^2 \psi / \partial t^2 > 0 \) at \(t = t_1 \). We, therefore, conclude that for \(r \geq \sqrt{7} - 2 \),
\[
\min \psi(t) = \psi(t_1) = \frac{8(1 - r^2)^2 - (3r^2 - 1)^2}{4(1 - r^2)^2} > 0,
\]
if \(r < \rho = \sqrt{4\sqrt{2} - 5} \approx 0.81 \ldots. \)

On the other hand, if \(r < \sqrt{7} - 2 \), then one can easily see that
\[
\min \psi(t) = \psi \left(\frac{1}{(1 + r)^2} \right) = \frac{2(2 + r)}{(1 + r)^2} > 0.
\]

To sum up, we have shown that
\[
\text{Re} h(z) > 0 \quad \text{in} \quad |z| < \rho = \sqrt{4\sqrt{2} - 5},
\]
from which it follows that
\[
\text{Re} h(\rho z) > 0, \quad z \in E.
\]

Now taking \(g(z) = z \) and \(F(z) = \rho h(\rho z) \) in Lemma 2, we conclude that the values of the function
\[
g(z) = \frac{f(z) \ast z[\rho h(\rho z)]}{f(z) \ast z}
= \frac{f(z) \ast z[\rho/(1 - \rho z) + \rho/(1 - \rho z)^2]}{f(z) \ast z}
= \rho \left[\frac{f(\rho z)}{\rho z} + f'(\rho z) \right]
\]
LINEAR SUMS OF CERTAIN ANALYTIC FUNCTIONS

lie in the convex hull of \(F(E) \). However, in view of (4) we have

\[
\text{Re} \ F(z) = \text{Re} \ \rho h(\rho z) > 0 \quad \text{in } E.
\]

We have thus proved that

\[
\text{Re} \left[\frac{f(\rho z)}{\rho z} + f'(\rho z) \right] > 0
\]

in \(E \) and hence

\[
\text{Re} \left[\frac{f(z)}{z} + f'(z) \right] > 0 \quad \text{in } |z| < \rho.
\]

If we consider the function \(f_0(z) = z/(1 - z) \in K \subset S_t(1/2) \) then it is seen that

\[
\frac{f_0(z)}{z} + f'_0(z) = \frac{1}{1 - z} + \frac{1}{(1 - z)^2},
\]

and the assertion regarding the sharpness of the number \(\rho \) now becomes obvious in view of the definition of the function \(h \).

Theorem 4. If \(f \in K \), then

\[
\text{Re} \left[\left(1 + \frac{zf''(z)}{f'(z)} \right) + \frac{1}{f'(z)} \right] > 0
\]

in \(|z| < \rho = (\sqrt{5} - 1)/\sqrt{2} = 0.874 \ldots \). The number \(\rho \) cannot be replaced by any larger one.

Proof. Proceeding as in the proof of the previous theorem, one can show that the function \(h \), defined by

\[
h(z) = \frac{2}{1 - z} - 1 + (1 - z)^2 \quad (z \in E),
\]

has the property that \(\text{Re} \ h(z) > 0 \) only when \(|z| < \rho = (\sqrt{5} - 1)/\sqrt{2} = 0.874 \ldots \), from which it follows that

\[
\text{Re} \ h(\rho z) > 0 \quad \text{in } E.
\]

Since the function \(f \) is given to be in \(K \) and \(g(z) = z/(1 - \rho z)^2 \) belongs to \(S_t \), Lemma 1, in conjunction with (6), provides that the function \(p \), defined by

\[
p(z) = \frac{f(z) * g(z) h(\rho z)}{f(z) * g(z)}
\]

has positive real part in \(E \). The desired conclusion is now obvious.

The sharpness of the number \(\rho \) follows from the fact that for the function \(f_0(z) = z/(1 - z) \in K \) we have

\[
\left(1 + \frac{zf''_0(z)}{f'_0(z)} \right) + \frac{1}{f'_0(z)} = \frac{2}{1 - z} - 1 + (1 - z)^2
\]

\[
= h(z) \quad \text{(given by (5))},
\]

and that \(\text{Re} \ h(z) > 0 \) only when \(|z| < \rho = (\sqrt{5} - 1)/\sqrt{2} \).

We observe that the disc \(|z| < \rho = 0.874 \ldots \) is much larger than the disc \(|z| < \sqrt{2}/2 = 0.707 \) in which \(\text{Re}(1/f'(z)) > 0 \) for every \(f \in K \).

We omit the proof of the following theorem.
THEOREM 5. If \(f \in S_t(1/2) \), then
\[
\text{Re} \left[\frac{z^2f''(z)}{f(z)} + \frac{zf'(z)}{f(z)} \right] > 0
\]
in \(|z| < \rho = \sqrt{8\sqrt{2} - 11} = 0.56 \ldots \). The number \(\rho \) is the best possible one.

If \(f \in K \), then it is well known that \(g(z) = (f(z) - f(-z))/2 \) is an odd function in \(S_t \) and hence \(\text{Re}(z/g(z)) > 0 \) in \(E \). Our next theorem generalizes this latter result.

THEOREM 6. Let \(f \in K \). Then for each integer \(n \geq 1 \) we have
\[
\text{Re} \left(\frac{v_n(z, f) - v_n(-z, f)}{f(z) - f(-z)} \right) > 0 \quad (z \in E),
\]
where \(v_n(z, f) \) is the de la Vallée Poussin mean of \(f \) of order \(n \).

PROOF. Let us first suppose that \(n \) is an odd integer, \(n = 2m + 1 \), say, and consider the function \(F_{2m+1} \) defined by
\[
F_{2m+1}(z) = 2(1 - z^2) \left[\frac{2m+1}{2m+2} + \frac{(2m+1)2m(2m-1)}{(2m+2)(2m+3)(2m+4)} z^2
+ \frac{(2m+1)(2m)(2m-1)(2m-2)(2m-3)}{(2m+2)(2m+3)(2m+4)(2m+5)(2m+6)} z^4
+ \cdots + \frac{(2m+1)(2m) \cdots 1}{(2m+2)(2m+3) \cdots (2(2m+1))} z^{2m} \right].
\]

Obviously \(F_{2m+1} \) is regular in \(E \) (in fact it is an entire function), and we can write it in the form
\[
F_{2m+1}(z) = 2 \left[\frac{2m+1}{2m+2} - \frac{2m+1}{2m+2} \left\{ 1 - \frac{2m(2m-1)}{(2m+3)(2m+4)} \right\} z^2
- \frac{(2m+1)2m(2m-1)}{(2m+2)(2m+3)(2m+4)} \left\{ 1 - \frac{(2m-2)(2m-3)}{(2m+5)(2m+6)} \right\} z^4
- \cdots - \frac{(2m+1)2m(2m-1) \cdots 3}{(2m+2)(2m+3) \cdots (2m+(2m-1))(4m)} \right] z^{2m+2}.
\]

In view of (8) and (7) it is now easy to see that in \(E \) we have
\[
\text{Re} F_{2m+1}(z) > 0.
\]

Next suppose that \(n \) is an even integer, \(n = 2m \), say, and consider the function \(F_{2m} \) defined by
\[
F_{2m}(z) = 2(1 - z^2) \left[\frac{2m}{2m+1} + \frac{2m(2m-1)(2m-2)}{(2m+1)(2m+2)(2m+3)} z^2
+ \cdots + \frac{2m(2m-1) \cdots 3 \cdot 2z^{2m-2}}{(2m+1)(2m+2) \cdots (2m+(2m-1))} \right].
\]

As before, one can see that \(\text{Re} F_{2m}(z) > 0 \) in \(E \).
In Lemma 1, letting \(g(z) = z/(1 - z^2) \), a function belonging to \(S_t \), and

\[
F(z) = \begin{cases}
F_{2m+1}(z) & \text{if } n = 2m + 1 \text{ is odd,} \\
F_{2m}(z) & \text{if } n = 2m \text{ is even,}
\end{cases}
\]

we conclude that for every integer \(n \geq 1 \), the function

\[
w(z) = \frac{f(z) * zF(z)/(1 - z^2)}{f(z) * z/(1 - z^2)}
\]

takes values in the right half-plane, that is, \(\text{Re} \, w(z) > 0 \) in \(E \).

A moderate calculation, however, shows that

\[
w(z) = \frac{v_n(z, f) - v_n(-z, f)}{f(z) - f(-z)}.
\]

This completes the proof of our theorem.

As observed earlier, if \(f \in K \), then \(g(z) = (f(z) - f(-z))/2 \) is an odd starlike function. We conclude this paper with a theorem pertaining to \(g \) which, although not in tune with the earlier one, is of considerable interest.

Theorem 7. If \(f \in K \), then

\[g(\rho z) < f(z) \]

in \(E \), where

\[g(z) = \frac{1}{2} (f(z) - f(-z)) \]

and \(\rho = \sqrt{2} - 1 = 0.414 \ldots \) The number \(\rho \) cannot be replaced by any larger one.

Proof. Since \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in K \) and

\[g(\rho z) = z + a_3 \rho^3 z^3 + a_5 \rho^5 z^5 + \cdots , \]

the conclusion of our theorem would follow provided \(\{\rho, 0, \rho^3, 0, \rho^5, \ldots \} \) is a subordinating factor sequence. In view of Lemma 3 this will be true if and only if

\[
\text{Re} \left[1 + 2 \sum_{m=0}^{\infty} \rho^{2m+1} z^{2m+1} \right] = \text{Re} \left[1 + \frac{2\rho z}{1 - \rho^2 z^2} \right] > 0 \quad (z \in E),
\]

or,

\[1 - 2\rho/(1 - \rho^2) \geq 0, \]

which is true by the choice of \(\rho \).

To prove that the number \(\rho \) is the best possible one, let us consider the function \(f(z) = z/(1 - z) \in K \). It is then seen that for any \(0 \leq \lambda \leq 1 \), \(g(\lambda z) = \lambda z/(1 - \lambda^2 z^2) \). Since \(g(-\lambda) = -\lambda/(1 - \lambda^2) < -1/2 \) if \(\lambda > \sqrt{2} - 1 \), from the fact that the range of \(f \) is the half-plane \(\{w | \text{Re} \, w > -1/2\} \) it follows that \(g(\lambda z) \) cannot be subordinate to \(f \) in \(E \) if \(\lambda > \sqrt{2} - 1 = \rho \).

References