Isolation theorem for products of linear forms
HTML articles powered by AMS MathViewer
- by T. W. Cusick
- Proc. Amer. Math. Soc. 100 (1987), 29-33
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883396-X
- PDF | Request permission
Abstract:
A theorem of Cassels and Swinnerton-Dyer about products of three linear forms with real coefficients is generalized to products of any number of linear forms.References
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708 —, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.
- J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A 248 (1955), 73–96. MR 70653, DOI 10.1098/rsta.1955.0010
- B. F. Skubenko, The product of $n$ linear forms in $n$ variables, Trudy Mat. Inst. Steklov. 158 (1981), 175–179, 230 (Russian). Analytic number theory, mathematical analysis and their applications. MR 662844
- B. F. Skubenko, Isolation theorem for decomposable forms of totally real algebraic number fields of degree $n\geq 3$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 (1981), 167–171, 202 (Russian). Analytic number theory and the theory of functions, 4. MR 644002
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 29-33
- MSC: Primary 11H46
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883396-X
- MathSciNet review: 883396