An inequality for eigenvalues of Sturm-Liouville problems
HTML articles powered by AMS MathViewer
- by Catherine Bandle and Gérard Philippin
- Proc. Amer. Math. Soc. 100 (1987), 34-36
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883397-1
- PDF | Request permission
Abstract:
By means of simple transformations, inequalities for eigenvalues corresponding to different boundary conditions are derived.References
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). MR 117419, DOI 10.1007/BF00252910
- I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319–333. MR 829055
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 34-36
- MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883397-1
- MathSciNet review: 883397