A remark on $A_ 1$-weights for the strong maximal function
HTML articles powered by AMS MathViewer
- by Fernando Soria
- Proc. Amer. Math. Soc. 100 (1987), 46-48
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883399-5
- PDF | Request permission
Abstract:
If $g$ is a locally integrable function and $M$ is the Hardy-Littlewood maximal function then ${(Mg)^\delta }$ represents an ${A_1}$-weight of $M$ for every $0 < \delta < 1$; that is, $M{(Mg)^\delta }(x) \leq {C_\delta }{(Mg(x))^\delta }$ a.e. In this paper we show that this result does not hold in general if we replace $M$ by the strong maximal operator.References
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- I. Peral and J. L. Rubio de Francia (eds.), Recent progress in Fourier analysis, North-Holland Mathematics Studies, vol. 111, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 101. MR 848136
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 46-48
- MSC: Primary 42B20; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883399-5
- MathSciNet review: 883399