Stability property of Möbius mappings
HTML articles powered by AMS MathViewer
- by T. Iwaniec
- Proc. Amer. Math. Soc. 100 (1987), 61-69
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883402-2
- PDF | Request permission
Abstract:
Let $F$ be an arbitrary class of continuous mappings acting and ranging on domains in ${{\mathbf {R}}^n}$ which is invariant under similarity transformations of ${{\mathbf {R}}^n}$ and the restriction of a map to any subdomain. The class Möb of Möbius mappings acting in ${{\mathbf {R}}^n}$ is of particular interest. Assume that the class $F$ is "$c$-uniformly close" to Möb. Then we show that any map in $F$ is either constant or a local quasiconformal homeomorphism. As a corollary we obtain a distinctly elementary proof of the Local Injectivity Theorem for quasiregular mappings.References
- B. Bojarski and T. Iwaniec, Another approach to Liouville theorem, Math. Nachr. 107 (1982), 253–262. MR 695751, DOI 10.1002/mana.19821070120
- F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98–105. MR 125964, DOI 10.1073/pnas.47.1.98
- V. M. Gol′dšteĭn, The behavior of mappings with bounded distortion when the distortion coefficient is close to one, Sibirsk. Mat. Ž. 12 (1971), 1250–1258 (Russian). MR 0294634
- O. Martio, S. Rickman, and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 31. MR 299782
- Ju. G. Rešetnjak, Liouville’s conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Ž. 8 (1967), 835–840 (Russian). MR 0218544 —, Stability theorems in geometry and analysis, "Nauka", Novosibirsk, 1982. (Russian)
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 61-69
- MSC: Primary 30C60
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883402-2
- MathSciNet review: 883402