On the almost everywhere convergence to $L^ p$ data for higher order hyperbolic operators
HTML articles powered by AMS MathViewer
- by Christopher D. Sogge
- Proc. Amer. Math. Soc. 100 (1987), 99-103
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883408-3
- PDF | Request permission
Abstract:
First we prove a sharp maximal Fourier integral theorem for ${L^p}({{\mathbf {R}}^n}),\;1 < p \leq 2$, using the techniques of [4-6]. Then we apply the maximal theorem to prove a sharp result concerning the almost everywhere convergence to ${L^p}$-initial data for the Cauchy problem for smooth variable coefficient strictly hyperbolic linear partial differential operators of order $m > 2$.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Allan Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. MR 620265, DOI 10.1512/iumj.1981.30.30043 J. L. Rubio de Francia, Maximal functions and Fourier transforms (preprint).
- Alberto Ruiz, On a.e. convergence of solutions of hyperbolic equations to $L^p$-initial data, Trans. Amer. Math. Soc. 287 (1985), no. 1, 167–188. MR 766212, DOI 10.1090/S0002-9947-1985-0766212-9
- Christopher D. Sogge, On maximal functions associated to hypersurfaces and the Cauchy problem for strictly hyperbolic operators, Trans. Amer. Math. Soc. 304 (1987), no. 2, 733–749. MR 911093, DOI 10.1090/S0002-9947-1987-0911093-5
- Christopher D. Sogge and Elias M. Stein, Averages of functions over hypersurfaces in $\textbf {R}^n$, Invent. Math. 82 (1985), no. 3, 543–556. MR 811550, DOI 10.1007/BF01388869
- Christopher D. Sogge and Elias M. Stein, Averages over hypersurfaces. II, Invent. Math. 86 (1986), no. 2, 233–242. MR 856844, DOI 10.1007/BF01389070
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6 M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J., 1981.
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145, DOI 10.1007/978-1-4684-8780-0
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 99-103
- MSC: Primary 35L15; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0883408-3
- MathSciNet review: 883408