ABSTRACT. If \(G \) is a finite Abelian group acting as a \(\mathbb{Z}_p \)-homology \(n \)-sphere \(X \) (where \(P \) is the set of primes dividing \(|G| \)), then there is an integer valued function \(n(\cdot, G) \) defined on the prime power subgroups \(H \) of \(G \) such that \(X^H \) has the \(\mathbb{Z}_p \)-homology of a sphere \(S^{n(H,G)} \). We prove here that there exists a real representation \(R \) of \(G \) such that for any prime power subgroup \(H \) of \(G \),
\[
\dim(S(R^H)) = n(H, G)
\]
where \(S(R^H) \) is the unit sphere of \(R^H \), provided that \(n - n(H,G) \) is even whenever \(H \) is a 2-subgroup of \(G \).

0. Introduction. Suppose that \(G \) is a finite Abelian group and let \(P \) be the set of primes dividing \(|G| \). If \(G \) acts on a finite CW-complex \(X \) which has the \(\mathbb{Z}_p \)-homology of \(S^n \), then for any \(p \in P \) and \(p \)-subgroup \(H \) of \(G \) the fixed point set of \(H \) on \(X \), \(X^H \), has the \(\mathbb{Z}_p \)-homology of \(S^{n(H,G)} \) for some integer \(n(H,G) \geq -1 \) (less than or equal to 0 signifies empty). This is a well-known consequence of Smith theory (see [2, III or 1, IV], e.g.). Thus we obtain in this way an integer valued function, \(n(\cdot, G) \), defined on the set of \(p \)-subgroups of \(G \) by \(H \mapsto n(H, G) \) (note that \(n(e,G) = n \)). This function is called the "dimension function" and has a considerable literature (see [5, 3, 6, 7, 9]; [10] gives a related extensive bibliography).

The function \(n(\cdot, G) \) satisfies the following well-known conditions (see [1, XIII, 2.3; IV, 4.4, 4.7]):

1. (Borel Formula) If \(H \leq K \) are both \(p \)-subgroups of \(G \) and \(K/H = \mathbb{Z}_p + \mathbb{Z}_p \), then \(n(H,G) - n(K,G) = \sum (n(K'/G) - n(K,G)) \) with the sum over all \(H \leq K' \leq K \) such that \(K'/H = \mathbb{Z}_p \).
2. If \(H \leq K \) are \(p \)-subgroups of \(G \), then \(n(K,G) \leq n(H,G) \).
3. If \(H \leq K \) are \(p \)-subgroups of \(G \) with \(K/H = \mathbb{Z}_p \) and \(p \) odd, then \(n(H,G) - n(K,G) \) is even.
4. If \(H \leq K' \leq K \) are 2-subgroups of \(G \) such that \(K/H = \mathbb{Z}_4 \), \(K'/H = \mathbb{Z}_2 \), then \(n(H,G) - n(K',G) \) is even.

For each \(p \in P \), let \(G(p) \) denote the \(p \)-Sylow subgroup of \(G \) and set \(N(\cdot, G) = n(\cdot, G) + 1 \). The function \(N(\cdot, G) \) restricted to the subgroups of \(G(p) \) will naturally be denoted by \(N(\cdot, G(p)) \). In [8] it was shown that \(N(\cdot, G(p)) \) is realized by a real representation \(V(p) \) of \(G(p) \) which means that for each \(H \leq G(p) \),
\[
\dim V(p)^H = N(H, G(p)) = N(H,G).
\]
If \(S(V(p)) \) denotes the unit sphere of \(V(p) \), then \(\dim S(V(p)^H) = n(H,G) \).

Here we are interested in the existence of a real representation \(R \) of the Abelian group \(G \) such that for any \(p \)-subgroup \(H \) of \(G \) (for any \(p \in P \)), \(\dim R^H = N(H,G) \). Thus \(R \) would be a simultaneous realization of the functions \(N(\cdot, G(p)) \), \(p \in P \).
It should be noted that in the special case where X^H is a homology sphere for all $H \leq G$, then $N(\ ,G)$ is defined on all subgroups of G and tom Dieck has shown in [3] that $N(\ ,G)$ is realized by a difference of representations. In general, this is best possible.

Clearly $N(\ ,G)$ satisfies conditions 1–4 if $n(\ ,G)$ does. We will denote $N(e,G)$ by N. As an example to show that some condition beyond 1–4 is needed, suppose $G = \mathbb{Z}_6$, $N = 2$, $N(\mathbb{Z}_3,G) = 0$, and $N(\mathbb{Z}_2,G) = 1$. Then $N(\ ,G)$ satisfies conditions 1–4 but there is no real representation of G which realizes these numbers simultaneously as dimensions. From now on we will assume the following “orientation preserving” condition holds, in addition to conditions 1–4:

5. If H is any 2-subgroup of G, then $N - N(H, G)$ is even.

We obtain the following theorem and corollary:

THEOREM. Let G be a finite Abelian group and suppose $N(\ ,G)$ is a nonnegative integer valued function defined on the p-subgroups of G for all $p \mid |G|$, satisfying conditions 1–5. Then there exists a real representation R of G such that for any p-subgroup H of G, $p \mid |G|$, $\dim R^H = N(H,G)$. Furthermore, if R is another such representation of G then for all subgroups H of G,

$$\dim R^H \equiv \dim R^H \pmod{2}.$$

COROLLARY. Let G be a finite Abelian group and suppose the 2-Sylow subgroup of G is cyclic. If $N(\ ,G)$ is a nonnegative integer valued function defined on the p-subgroups of G, $p \mid |G|$ satisfying only conditions 1–4, then there exists a real representation R such that for any p-subgroup H of G, $p \mid |G|$, $\dim R^H = N(H,G) + 1$.

In §§1 and 2 we prove the theorem and corollary respectively. We thank the referee for several suggestions leading to an improved exposition.

1. **Proof of the theorem.** Let G be a finite Abelian group and suppose $N(\ ,G)$ is a nonnegative integer valued function on the p-subgroups of G, for all $p \in P$, satisfying conditions 1–5. By [8], for each $p \in P$ there is a representation $V(p)$ of the p-Sylow subgroup $G(p)$ of G such that $\dim V(p)^H = N(H,G(p))$ for all $H \leq G(p)$. Let $V = \bigotimes_{p \mid |G|} V(p)$. Then V is a representation of G and we will prove by induction on $|G|$ that V contains a subrepresentation R of G of dimension $N = N(e,G)$ such that $\dim R^H = N(H,G)$ for all p-subgroups H of G, all $p \in P$. So if $|K| < |G|$, $N(\ ,K)$ is a nonnegative integer valued function on the prime power subgroups of K and $W(p)$ is a representation of $K(p)$ realizing $N(\ ,K(p))$, we can assume $W = \bigotimes_{p \mid |K|} W(p)$ contains a subrepresentation realizing $N(\ ,K)$.

Suppose that $N(\ ,G)$ is a nonnegative integer valued function defined on the prime power order subgroups of an Abelian group G satisfying conditions 1–5 and suppose $N(e,G) = N(H,G)$ for some $H \leq G(p)$, $|H| = p$. Then for any prime power order subgroup K of G, define $N(K/K \cap H, G/H) = N(K,G)$. It is clear that $N(\ ,G/H)$ satisfies conditions 1–5. Moreover, for any $K \leq G(p)$,

$$N(K,G) = N(K,G(p)) = N(KH,G(p)) = N(KH,G) = N(KH/H,G/H).$$

For by induction we can assume $N(K',G(p)) = N(K'H,G(p))$ for any $K' \not\leq K$ and clearly we can assume $H \not\leq K$. Select $K' < K$ such that $|K/K'| = p$ and use
condition 1 (Borel Formula) on $K' \leq KH$ to obtain $N(K, G(p)) = N(KH, G(p))$. It follows that in this case, a representation of G/H realizing $N(, G/H)$ can be regarded as an unfaithful representation of G (with kernel at least H) realizing $N(, G)$.

Now for each $p \in \mathcal{P}$ and each $Z_p \leq G$, we must have $N - N(Z_p, G) > 0$, otherwise by the observation above we could assume we are given a dimension function on G/Z_p. Of all the differences $N - N(Z_p, G)$, $p \in \mathcal{P}$, let p_0 and $H_0 = Z_{p_0}$ be such that $N - N(H_0, G)$ is a minimum. Then the representation $V(p_0)$ of $G(p_0)$ (the p_0-Sylow subgroup of G) contains an irreducible subrepresentation $W(p_0)$ of $G(p_0)$ on which H_0 acts without (nonzero) fixed points. For $q \neq p_0$ select $H = Z_q \leq G(q)$ such that $N - N(H, G)$ is least for q (in general $N - N(H_0, G) \leq N - N(H, G)$) and let $W(q)$ be an irreducible subrepresentation of $V(q)$ on which H acts without fixed points. Then $\mathcal{W} = \otimes_{q \mid |G|} W(q)$ is a G-subrepresentation of $\mathcal{V} = \otimes_{q \mid |G|} V(q)$.

Let R_1 be an irreducible G-subrepresentation of \mathcal{W}. If $|G|$ is larger than 2, R_1 has dimension 2, since R_1 induces a free, irreducible, real representation of a cyclic group of order larger than 2 (the cyclic group is G/kernel of $R_1 = $ kernel of \mathcal{W}).

Now R_1, is being a representation of G, has associated to it a dimension function $N_1(, G)$ defined on all subgroups H of G by $N_1(H, G) = \dim R_1^H$. Set $N_1(, G) = N(, G) - N_1(, G)$. It is easy to verify that $N_1(, G)$ is a dimension function defined on the prime power subgroups of G satisfying conditions 1–5.

Since $N_1(e, G) < N(e, G)$ and $N_1(H_0, G) = N(H_0, G)$ we are presented with two situations: (a) $N_1(e, G) = N_1(H_0, G)$ or (b) $N_1(e, G) > N_1(H_0, G)$.

In case (a) the function $N_1(, G)$ may be replaced (as noted above) by a dimension function defined on the prime power subgroups of G/H_0. Since for any q-subgroup K of G, $\dim R^K = \dim W(q)^K$, the subrepresentation $W(q)^\perp$ of $V(q)$ realizes the dimension function $N_1(, G(q))$. Since $|G/H_0| < |G|$ by induction the tensor product of all the $W(q)^\perp$ contains a subrepresentation R^* of G/H_0 (which may be thought of as an unfaithful representation of G). R^* is a G-subrepresentation of \mathcal{V}, the tensor product of all the $V(q)$. $R^* \oplus R_1$ is the required representation in this case.

In (b), where we have $N_1(e, G) > N_1(H_0, G)$, note that $N_1(e, G) - N_1(H_0, G)$ is still a minimum of all differences $N_1(e, G) - N_1(H, G)$. Since the function $N_1(, G(Q))$ is realized by the subrepresentation $W(q)^\perp$ of $V(q)$, we can repeat the procedure again obtaining another irreducible subrepresentation R_2 or G with an associated dimension function $N_2(, G)$ defined on the prime power subgroups of G (it is the restriction of a dimension function defined on all subgroups of G). Letting $N_2(, G) = N_1(, G) = N_2(, G)$ we again have a dimension function satisfying conditions 1–5 and we proceed as above. Eventually we obtain a dimension function $N_k(, G)$ such that $N_k(e, G) = N_k(H_0, G) (k = N - N(H_0, G))$. By case (a) and induction there is a G-subrepresentation of \mathcal{V}, R^* realizing $N_k(, G)$. The representation $R = R^* \oplus R_1 \oplus R_2 \oplus \cdots \oplus R_k$ is the required G-subrepresentation of \mathcal{V}.

Now suppose \bar{R} is another G-subrepresentation such that for any prime power order subgroup H of G, $\dim \bar{R}^H = N(H, G)$. Let K be an arbitrary subgroup of G and by induction assume $\dim \bar{R}^K - \dim R^k$ is even for all subgroups K of G with $|K| < |H|$. Select $K \leq H$ so that $|H/K|$ is an odd prime p (if this is not possible
then H is a 2-group and $\dim \overline{R}_H^H - \dim R^H$ is zero). The group $H/K = \mathbb{Z}_p$ acts on both \overline{R}_K^H and R^K. It follows that both $\dim \overline{R}_K^H - \dim \overline{R}^H$ and $\dim R^K - \dim R^H$ are even and therefore $\dim \overline{R}^H - \dim R^H$ is even. This completes the proof of the theorem. □

2. Proof of the corollary. Suppose G is a finite Abelian group with cyclic 2-Sylow subgroup, $G(2)$, and suppose $N(\cdot, G)$ is a nonnegative integer valued function defined on the p-subgroups of G, $p \mid |G|$, satisfying conditions 1–4. By condition 4, for any proper subgroup H of $G(2)$, $N - N(H, G)$ is even. Suppose that $N - N(G(2), G)$ is odd. For each $p \mid |G|$, let $\overline{V}(p) = V(p) \oplus 1$, where 1 denotes the trivial one-dimensional representation of $G(p)$. It is easy to see that $\overline{V}(p)$ realizes $N(\cdot, G(p)) + 1$. The function $N^*(\cdot, G) = N(\cdot, G) + 1$ corresponds to the G-action on the unreduced suspension on X.

Now since $N - N(G(2), G)$ is odd, $\overline{V}(2)$ has an irreducible summand of dimension 1 on which H, the maximal proper subgroup of $G(2)$, acts trivially and on which $G(2)$ acts nontrivially. Denote this summand by $W(2)$ for any $p \neq 2$ let $W(p)$ be a one-dimensional trivial subrepresentation of $\overline{V}(p)$. Then $R_1 \otimes_{p \mid |G|} W(p)$ is a 1-dimensional G-representation with a very large kernel and is a subrepresentation of $\overline{V} = \bigotimes_{p \mid |G|} \overline{V}(p)$. Let $N_1(\cdot, G)$ be the dimension function associated with R_1 ($N_1(\cdot, G)$ is actually defined on all subgroups of G). Setting $\overline{N}(\cdot, G) = N^*(\cdot, G) - N_1(\cdot, G)$ we see that $N - \overline{N}(H, G)$ is now even for all prime power subgroups of G so $\overline{N}(\cdot, G)$ satisfies conditions 1–5. By the argument §1, $\overline{N}(\cdot, G)$ is realized by a subrepresentation R of $\bigotimes_{p \mid |G|} W(P)^\perp$, since $\overline{N}(\cdot, G(p))$ is realized by $W(p)^\perp$ for all $p \mid |G|$. Then $R \oplus R_1$ is a subrepresentation of the G-representation \overline{V} which realizes $N^*(\cdot, G)$. This establishes the corollary.

EXAMPLES. Let $G = \mathbb{Z}_6$, $N = 2$, $N(\mathbb{Z}_2, G) = 1$, $N(\mathbb{Z}_3, G) = 0$. If we “suspend” $N(\cdot, G)$ we have $N^* = 3$, $N^*(\mathbb{Z}_2, G) = 2$, $N^*(\mathbb{Z}_3, G) = 1$. Then the construction of §§2 and 1 yields the 3-dimensional representation of G, given on a generator by

$$
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & R(2\pi/3)
\end{pmatrix}
$$

where $R(2\pi/3)$ is a 2×2 rotation matrix.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MISSOURI–ST. LOUIS, ST. LOUIS, MISSOURI 63121