Completion of factor algebras of ideals
HTML articles powered by AMS MathViewer
- by B. Balcar and F. Franek
- Proc. Amer. Math. Soc. 100 (1987), 205-212
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884452-2
- PDF | Request permission
Abstract:
Let $\mathfrak {I}$ be a $\kappa$-complete ideal over $\kappa$. The structure of the completion of the Boolean algebra $\wp (\kappa )/\mathfrak {I}$ is investigated with respect to properties of the ideal $\mathfrak {I}$ and the cardinal $\kappa$. It is shown that under certain conditions $\operatorname {Comp}(\wp (\kappa )/\mathfrak {I})$ is isomorphic to a collapse algebra.References
- Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on $\textbf {N}$ covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11–24. MR 600576, DOI 10.4064/fm-110-1-11-24
- Bohuslav Balcar, Petr Simon, and Peter Vojtáš, Refinement properties and extensions of filters in Boolean algebras, Trans. Amer. Math. Soc. 267 (1981), no. 1, 265–283. MR 621987, DOI 10.1090/S0002-9947-1981-0621987-0 J. E. Baumgartner, A. D. Taylor and S. Wagon, Ideals on uncountable cardinals, Logic Colloquium 77, Proc. Conf. Wroclaw, 1977.
- B. Balcar and P. Vopěnka, On systems of almost disjoint sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 421–424 (English, with Russian summary). MR 314618
- Bohuslav Balcar and Peter Vojtáš, Almost disjoint refinement of families of subsets of $\textbf {N}$, Proc. Amer. Math. Soc. 79 (1980), no. 3, 465–470. MR 567994, DOI 10.1090/S0002-9939-1980-0567994-2 F. Franek, Some results about saturated ideals and about isomorphisms of $\kappa$-trees, Ph.D. Dissertation, Dept. of Math., University of Toronto, 1983.
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Thomas Jech and Karel Prikry, Ideals over uncountable sets: application of almost disjoint functions and generic ultrapowers, Mem. Amer. Math. Soc. 18 (1979), no. 214, iii+71. MR 519927, DOI 10.1090/memo/0214
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 205-212
- MSC: Primary 06E05; Secondary 03E05, 03G05, 04A20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884452-2
- MathSciNet review: 884452