Positive $p$-summing operators on $L_ p$-spaces
HTML articles powered by AMS MathViewer
- by Oscar Blasco
- Proc. Amer. Math. Soc. 100 (1987), 275-280
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884466-2
- PDF | Request permission
Abstract:
It is shown that for any Banach space $B$ every positive $p$-summing operator from ${L^{p’}}(\mu )$ in $B$, $1/p + 1/p’ = 1$, is also cone absolutely summing. We also prove here that a necessary and sufficient condition that $B$ has the Radon-NikodṔm property is that every positive $p$-summing operator $T:{L^{p’}}(\mu ) \to B$ is representable by a function $f$ in ${L^p}(\mu ,B)$.References
- O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), no. 1, 19–33. MR 887310, DOI 10.4064/sm-86-1-19-33
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015 J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in ${L_p}$-spaces and their applications, Studia Math. 29 (1968), 241-252.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333–353 (German). MR 216328, DOI 10.4064/sm-28-3-333-353
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 275-280
- MSC: Primary 47B10; Secondary 46B20, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884466-2
- MathSciNet review: 884466